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Abstract: Several members of the Hes/Her family, conserved targets of the Notch signalling pathway,
encode transcriptional repressors that dimerise, bind DNA and self-repress. Such autoinhibition of
transcription can yield homeostasis and, in the presence of delays that account for processes such as
transcription, splicing and transport, oscillations. Whilst previous models of autoinhibition of tran-
scription have tended to treat processes such as translation as being unregulated (and hence linear),
here we develop and explore a mathematical model that considers autoinhibition of transcription
together with nonlinear regulation of translation. It is demonstrated that such a model can yield, in
the absence of delays, nonlinear dynamical behaviours such as excitability, homeostasis, oscillations
and intermittency. These results indicate that regulation of translation as well as transcription allows
for a much richer range of behaviours than is possible with autoregulation of transcription alone. A
number of experiments are suggested that would that allow for the signature of autoregulation of
translation as well as transcription to be experimentally detected in a Notch signalling system.

Keywords: post transcriptional regulation; translation; mathematical model; excitable; oscillatory;
threshold; intermittency

1. Introduction

The Notch signalling pathway plays a crucial role in many different developmental
contexts (e.g., neural, endocrine, cardiovascular), is involved in the function and main-
tenance of adult tissue (e.g., [1]) and is known to be aberrant in many cancers (e.g., [2]).
Notch signalling is associated with diverse pattern formation phenomena such as lateral
inhibition, lateral induction and oscillator synchronisation [3].

Notch signalling occurs when a Notch ligand (i.e., Serrate or Delta) interacts with a
Notch receptor. Upon activation of the Notch receptor, the Notch intracellular domain
is cleaved and transported to the nucleus where it activates target gene expression [4].
Interaction with the Notch receptor can either be via a neighbouring cell (trans) or within a
single cell (cis). Amongst the targets of Notch signalling are members of the basic helix-loop-
helix family of transcription repressors (e.g., Hes7, Hes1, Her7). When in dimerised form,
these proteins inhibit their own transcription and therefore provide a negative feedback
loop in the Notch signalling pathway [5].

Negative feedback loops play an essential role in biological oscillations [6]. The
Goodwin [7] model considers an N-component cascade that is typically formulated such
that the Nth component in the cascade closes the feedback loop by nonlinearly inhibiting
the first component. Given at least three members in the cascade and sufficient nonlinearity
in the inhibition, oscillatory solutions can be obtained. However, in the presence of time
delays that represent the time required to, for example, transcribe, splice, transport and
translate mRNAs, oscillations are possible in a two variable cascade [8,9]. It has been
shown that transport processes, explicitly modelled using reaction diffusion theory, are
themselves sufficient to give rise to oscillatory solutions [10,11]. A common feature of
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the models described above is that processes such as mRNA degradation and translation
are assumed to be linear. However, in many situations such processes are regulated and
therefore unlikely to be linear.

Positive feedback loops have also been identified in many biological oscillators. For
example, in models of the cell cycle positive feedback loops give rise to hysteresis that
results in cell cycle phase transitions [12]. In neurons positive feedback between the
membrane potential and the conductance of particular ion channels gives rise to membrane
excitability and oscillations [13]. It has been suggested that one desirable feature of positive-
feedback in biological systems is tunability: the ability of an oscillator to exhibit a large
range in frequency whilst maintaining approximately constant amplitude [14].

Levels of gene products are regulated by processes such as transcriptional activation,
post transcriptional regulation (from splicing to RNA stability) and protein degradation.
mRNA sequences contain untranslated regions (UTRs) that flank the open reading frame at
the 5′ and 3′ ends. UTRs often contain conserved sequence elements that facilitate control
of translational efficiency and mRNA stability through the binding of specific regulatory
factors. Regulators at the post transcriptional level include RNA binding proteins (RNA-
BPs), microRNAs (miRNAs) and long-noncoding RNAs (lncRNAs). The 5′UTR is mostly
involved in regulating translation efficiency with elements such as upstream open reading
frames and secondary structures inhibiting translation. Other sequences such as 5′ terminal
oligopyrimidine sequences and internal ribosome entry sites may enable translation under
conditions where most other mRNAs are translationally inactive. The 3′UTRs often contain
several binding sites for miRNAs and/or RNA-BPs that mostly inhibit translation and/or
target the mRNA for degradation.

In mouse neural progenitor cells it has been identified that: (i) the miRNA mir-9 is
required for Hes1 oscillations, (ii) Hes1, a Notch target gene, represses miR-9 transcription;
and (iii) miR-9 decreases Hes1 mRNA stability, resulting in a double negative feedback
loop [15]. The disproportionate effect of mir-9 overexpression on Hes1 protein levels has
also led to the suggestion of an additional effect of mir-9 on mRNA translation [15]. The role
of mir-9 has been explored in a delay differential equation model of the Hes1 [16] system.
In the segmentation clock, a Notch-dependent molecular oscillator that drives oscillatory
expression of segmentation clock genes in a periodic fashion during early embryogenesis,
it has been established that the 3′UTR is critical for the correct expression of several
segmentation clock genes and some interacting miRNAs have been identified [17]. Thus
there is strong evidence for post-transcriptional regulation in two distinct developmental
systems in which Notch signalling plays a crucial role.

The aim of this study is to investigate a potential role for translational regulation in a
model of a transcriptional repressor. The layout is as follows: in Section 2 we introduce a
mathematical model; in Section 3.1 we explore numerical results and in Section 3.2 identify
experimentally testable predictions from the model; and, finally, in Section 4 we conclude
with a discussion.

2. Materials and Methods
2.1. Model Development

Let M = M(t), P = P(t) and X = X(t) represent the number of molecules of mRNA,
protein and X, respectively, in a cell at time t. It is assumed that transcription is repressed
by protein dimers such that the transcription rate is given by

k1

1 + ( P
P0
)2

,

where k1 represents the maximal production rate of mRNA and P0 the number of molecules
of protein at which mRNA transcription is half maximal. Note that this functional form
is equivalent to that considered by Lewis [9]. It is additionally assumed that translation
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of mRNA occurs at background translation rate, k3, and at a nonlinear rate, k4, that is
inhibited by X, i.e. translation occurs at rate

k3 +
k4

1 + X
X0

,

where X0 is the number of molecules of X at which X-dependent translation is half-maximal.
Finally, X is assumed to be under the same transcriptional regulation as M.

The total rates of change with respect to time are assumed to be given by the ordinary
differential equations

dM
dt

=
k1

1 + ( P
P0
)2
− k2M,

dP
dt

= M(k3 +
k4

1 + X
X0

)− k5P, (1)

dX
dt

=
k6

1 + ( P
P0
)2
− k7X,

where k2 is the mRNA degradation rate, k5 is the protein degradation rate, k6 is the
production rate of X and k7 is the degradation rate of X.

In this study we make a quasi-steady-state approximation for X. This assumption
could be realised, for example, in a situation where the production and degradation rates
of X are relatively large. Hence

X =
α

1 + ( P
P0
)2

,

where
α =

k6

k7
.

Substitution for X into Equations (1) yields

dM
dt

=
k1

1 + ( P
P0
)2
− k2M,

dP
dt

= M

k3 +
k4

1 +
α

X0

1(
1+( P

P0
)2
)
− k5P, (2)

with initial conditions given by

M(0) = M0, P(0) = P0.

Equations (2) were solved numerically using the Matlab ODE solver ode15s.

2.2. Parameters

Parameter values have been chosen based on a model of the Her oscillator [9]. Tran-
scription and protein degradation are assumed to occur on a time scale of minutes but,
notably, the mRNA degradation rate is smaller than that considered by Lewis [9]. See
Table 1.
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Table 1. A table of parameter values.

Parameter Description Value Units

k1 Maximal transcription rate 3.03 min−1

k2 mRNA degradation rate 0.03 min−1

k3 Background translation rate 0.12 min−1

k4 X dependent translation rate 20.12 min−1

k5 P degradation rate 0.30 min−1

α Max. X 70.43 Nondim
X0 Translation IC50 1 Nondim
P0 Transcription IC50 40 Nondim

σM Protein noise strength 1.0 min−1

σP mRNA noise strength 0.12 min−1

M0 mRNA initial condition 6 Nondim
P0 protein initial condition 60 Nondim

2.3. Bifurcation Analysis

Bifurcation diagrams were produced using the software coco [18].

2.4. Stochastic Model

A stochastic model is obtained upon making the assumption of additive white noise
in both mRNA and protein dynamics. Thus Equation (2) generalise to

dM
dt

=
k1

1 + ( P
P0
)2
− k2M + σMξM(t),

dP
dt

= M

k3 +
k4

1 +
α

X0

1(
1+( P

P0
)2
)
− k5P + σPξP(t), (3)

where σM and σP represent noise strengths and ξM(t) and ξP(t) Gaussian noise. Equation (3)
were solved numerically using the Euler-Maruyama method.

3. Results
3.1. Exploring Model Behaviour

A model is considered that accounts for the interactions between three components:
mRNA, M, protein, P, and a translation inhibitor, X. It is assumed that: (i) transcription
of mRNA is inhibited by protein dimers [9]; (ii) X is under the same transcriptional
control as M; (iii) X inhibits translation (see Figure 1a); and (iv) all species undergo linear
degradation [9]. In Section 2.1, a set of ordinary differential equations is derived that
describes the rates of change of the different molecular species.

The inhibition of translation by X introduces a double negative feedback loop (P
represses production of X which represses translation of P), i.e., a positive feedback loop.
Hence the translation rate is an increasing sigmoidal function of P. In contrast, the tran-
scription rate is a decreasing function of P (see Figure 1b). For large P, the translation rate
tends to its maximal value k3 + k4 whilst when P is small the translation rate is reduced to
k3. In this study we will consider the case where: (i) k4 � k3 (i.e., X can potentially have a
large effect of the effective translation rate); (ii) X is in quasi-equilibrium; and (iii) mRNA
is more stable than protein (k2 < k5).

In the limit of a low baseline transcription rate (small k1), the model has a unique
stable steady state. For a representative initial condition, both M and P evolve to the steady
state (see Figure 2a). It is instructive to plot the solution in the phase plane (see Figure 2b);
here M and P are plotted in a plane such that the time series solutions in Figure 2a are
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represented by the solid magenta line in Figure 2b. The M and P nullclines represent points
in the plane where the time derivatives are zero (e.g., the P nullcline represents the steady
state levels of protein for a given ‘clamped’ mRNA level, and vice-versa). Note that the
P nullcline has, for the chosen parameters, a local maximum and minimum, but that the
M nullcline is monotonically decreasing. The solution trajectory ultimately tends to the
intersection of the nullclines. In the limit of low transcription rate, the system behaves like
a standard model of auto-inhibition of transcription (e.g., a two variable Goodwin model).

(a) (b)
Figure 1. (a) A schematic diagram of the model. M—mRNA, P—protein, X—translational inhibitor.
(b) The translation (blue line) and transcription (red line) rates are plotted against P. See Table 1 for
parameter values.

(a) (b)
Figure 2. Homeostasis in the case of low transcription rate. (a) P and M are plotted against time, t.
(b) The corresponding solution (magenta line) is plotted in the PM phase plane. P nullcline (dashed
blue line), M nullcline (solid red line), Steady state (black dot). Equations (2) were solved numerically.
k1 = 0.234. Other parameter values in Table 1.

Upon increasing the background transcription rate, k1, the behaviour of the solution
is qualitatively different: a small but finite perturbation can result in a pulse of protein
before the solution returns to equilibrium. For a small perturbation about the steady state
(see Figure 3a,b), the solution quickly returns to the steady state and levels of protein do
not change markedly. However, when the perturbation is large enough (see Figure 3c,d),
a transient pulse of protein is produced and the solution takes a relatively long time to
return to steady state. These numerical results are indicative of a thresholding phenomenon
whereby sufficiently large stimuli (in this case provided via the initial conditions) result in a
large excursion in the phase plane (in this case a transient pulse of protein). By considering
different initial perturbations of both M and P, we identify threshold perturbations that
trigger the transient protein response (see Figure 3e,f).
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(a) (b) (c)

(d) (e) (f)
Figure 3. Excitable solutions in the case of an intermediate transcription rate. (a,b) Solution dynamics upon making a small
initial perturbation about the steady state. P and M are plotted against time, t, (a) and in the phase plane (b). (c,d) Solution
dynamics upon making a large initial perturbation about the steady state. Other details as in (a,b). (b,d) Magenta lines
represent solutions in the PM phase plane. P nullclines (dashed blue lines), M nullclines (solid red lines), steady states
(black dots). (e) max(P) is plotted against the initial number of mRNA molecules, M0. (f) max(P) is plotted against the
initial number of protein molecules, P0. k1 = 0.81. Equation (2) were solved numerically. Other parameter values as in
Table 1.

The large amplitude trajectory presented in Figure 3b,d, annotated by ABCDE, can
be explained as follows: at A levels of mRNA have been increased such that sufficient
protein can be generated to switch the translation rate from low to high. As k4 � k3, a
large amount of protein is produced (the solution reaches B). However, as transcription is
inhibited by high protein levels, mRNA levels deplete and there is a reduction in protein (B
to C). As protein levels decrease, the translation rate ultimately switches back to the lower
rate (C to D) and transcription is again active. Finally, levels of mRNA increase and the
solution returns to the steady state (D to E).

Further increasing the transcription rate, k1, results in the emergence of two large
amplitude limit cycle solutions (one stable and one unstable, see Figure 4). However, the
steady state remains linearly stable, with trajectories that are initialised close to it tending
towards it (see Figure 4a,b). In contrast, solutions that are initialised sufficiently far from
the stable steady state instead find the stable limit cycle (see Figure 4c,d). Hence for a
particular range of the transcription rate k1, the model is bistable.
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(a) (b) (c)

(d) (e)
Figure 4. The emergence of a stable limit cycle upon further increase in the parameter k1. (a,b) Solution dynamics following
a small perturbation about the steady state. M0 = 54, P0 = 19. (a) P and M are plotted against time, t. (b) Corresponding
solutions (magenta lines) are plotted in the PM phase plane. P nullclines (dashed blue lines), M nullclines (solid red lines),
steady states (black dots). (c,d) A larger perturbation about the steady state results in a stable limit cycle. M0 = 540, P0 = 19.
Other details as in (a,b). Equation (2) were solved numerically. (e) Intermittent oscillations: noise allows for stochastic
switching between stable limit cycle and the stable steady state. P is plotted against time, t. Equation (3) were solved
numerically. k1 = 1.55. Other parameters as in Table 1.

It has been shown that isolated zebrafish presomitic mesoderm (PSM) cells exhibit in-
termittent oscillations whereby successive cycles are followed by periods of non-oscillatory
behaviour [19]. Upon introducing a term representing white noise in the mRNA and
protein dynamics, we obtain a stochastic differential equation model (see Section 2.4). With
appropriately chosen noise strength, the solutions of the stochastic model toggle between
stable steady states and the stable limit cycle (see Figure 4e). Hence the proposed model
possesses a parameter regime in which there are intermittent oscillations.

Returning to the deterministic model, further increase in k1 results in a subcritical
Hopf bifurcation: the stable steady state and unstable limit cycle are lost and solutions tend
to the stable limit cycle (see Figure 5). The stable limit cycle solutions can be characterised
by the trajectory ABCDA (see Figure 5). At A, levels of M are high and P are low. However,
translation of the mRNA pool generates sufficient P to activate the translation switch, levels
of P increase and the system moves to B. Higher levels of P then result in inhibition of
transcription and the mRNA pool depletes (B to C). On the segment CD levels of protein
decrease and the translation switch is deactivated. At D the transcription rate increases
again as levels of P are low and the system moves back towards A. Hence in this model the
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coordinated switching on/off of both transcription and translation is sufficient to give rise
to limit cycle solutions.

The numerical results presented in Figures 2–4 are summarised in the bifurcation
diagram in Figure 6: for small k1 there is a stable steady state; for an intermediate range
of (approximately 1.5 < k1 < 1.6), there is a stable steady state, an unstable limit cycle
and a stable limit cycle. At k1 ∼ 1.6 there is a subcritical Hopf bifurcation at which the
stable steady state becomes unstable. At k1 ∼ 15.8 there is a supercritical Hopf bifurcation;
there is the emergence of small amplitude stable limit cycles. See Figure 5 for a plot of the
oscillator period against k1.

(a) (b)
Figure 5. Oscillatory solutions of Equation (2). (a) P and M are plotted against time, t. (b) Corre-
sponding solution (magenta line) is plotted in the PM phase plane. P nullcline (dashed blue line), M
nullcline (solid red line), steady states (black dot). See Table 1 for parameter values.

(a) (b) (c)
Figure 6. Bifurcation structure of Equation (2) upon varying the parameter k1. (a) Number of protein molecules is plotted
against k1. Extrema of the stable (black line) and unstable (magenta line) limit cycles. Stable steady state (solid blue lines).
Unstable steady state (dashed blue line). (b) Inset for (a). (c) Oscillator period is plotted against k1. Stable limit cycle (solid
line), unstable limit cycle (dashed line). Hopf bifurcation (HB), Saddle node bifurcation (SN). Other parameter values as in
Table 1.

3.2. Experimentally Testable Predictions
3.2.1. Inhibition of Transcription via a Notch Signalling Inhibitor

γ secretase inhibitors (e.g., LY411575) provide a dose-dependent means of inhibiting
Notch signalling via inhibiting the release of the Notch intracellular domain (NICD) from
the Notch receptor (e.g., [20]). Although NICD is not explicitly accounted for in the
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proposed model, we reasoned that the parameter in the model most strongly affected by
NICD is the basal transcription rate k1. Hence below we consider reduction in k1 as a proxy
for dose-dependent γ secretase inhibitor treatment.

Upon transcriptional block (k1 = 0), the time course of protein levels has a distinct and
testable signature. To illustrate this we consider a representative sample of points from the
limit cycle solution (see Figure 7a) as initial conditions at which to simulate transcriptional
block (i.e., set k1 = 0). Independently of the position in the cycle at which transcription is
blocked, mRNA levels decrease exponentially to zero (see Figure 7b). However, in contrast
to mRNA, the time course of protein levels is strongly dependent on the position in the
cycle at which the perturbation is applied. When protein levels are low, protein also decays
exponentially. However, when protein levels are high, the decay is bimodal (see Figure 7).
Thus measurement of the decay kinetics of protein, P, upon complete transcriptional
inhibition has a cycle-dependent signature. This effect could be quantified, for example,
using a real time reporter of protein (e.g., Hes7-Achilles [21]).

(a) (b) (c)
Figure 7. Protein decay is multimodal upon complete transcriptional inhibition. (a) A set of representative points (markers)
is chosen on the limit cycle cycle solution. Other details as in Figure 5b. (b) mRNA levels are plotted against time. (c) Protein
levels are plotted against time. Initial conditions given by each of the markers in (a). Equation (2) were solved numerically.
See Table 1 for parameter values.

Partial inhibition of transcription in the oscillatory regime can result, counterintuitively,
in an increase in detectable mRNA levels. Consider the case where a population of
asynchronous cellular oscillators is subject to Western blot and qPCR in order to quantify
levels of P and M, respectively. In the context of the proposed model, the measured
quantities can be represented by the time-average of the oscillatory signal, i.e.,

M̄ =
1
T

∫ T

t−T
M(t)dt P̄ =

1
T

∫ T

t−T
P(t)dt, (4)

where T is the oscillator period. We find that levels of mRNA and protein broadly decrease,
as expected, as the transcription rate k1 decreases and ultimately oscillations are lost (see
Figure 8). However, at the bifurcation value of k1, where oscillations are lost, the system
becomes excitable, with the steady state having relatively high levels of mRNA. Hence, in
principle, increased levels of mRNA can be detected upon decreasing the transcription rate
k1 (see Figure 8b) as the steady state in the excitable regime has a higher level of mRNA
than that obtained by time-averaging the oscillations.
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(a) (b)

(c) (d)
Figure 8. The effect of partial reduction of the transcription rate, k1. (a–c) M and P are plotted against
time for different transcription rates. (d) The detectable amount of M and P is plotted against k1 (see
Equation (4)). Equation (2) were solved numerically. Other parameter values as in Table 1.

3.2.2. Treatment with a Translational Inhibitor

We next investigated how the model behaves upon inhibition of translation. Trans-
lation could, in the context of the model, be inhibited in two specific ways: reduction in
the background translate rate, k3, or the X-dependent translation rate, k4. Cycloheximide
(CHX), for example, is a general inhibitor of eukaryotic translation elongation which can
be used in a dose dependent manner to slow or stop translation. Moreover, the trans-
lation rates of individual mRNAs are dependent on specific sequence elements in the
mRNA sequence, mostly in the 5′ and 3′ untranslated regions, and potentially the factors
that can interact with these (represented by X). Mutagenesis of sequence elements or re-
moval/inhibition or overexpression of the interacting factors can affect translation rates of
specific mRNAs.

To model specific translation inhibition, we consider reduction in the parameter k4.
Upon complete inhibition of X-dependent translation (k4 = 0), levels of protein decrease to
a low steady state whilst levels of mRNA tend to a high steady state as there is less protein
to inhibit transcription (see Figure 9a,b). Upon partial inhibition of mRNA translation rate,
levels of protein decrease whilst levels of mRNA increase (see Figure 9c–f). Moreover, the
period of the oscillation increases as the parameter k4 decreases (see Figure 9d). These
numerical results indicate that perturbation of translation rates ought to result in detectable
changes to levels of mRNA and protein as well as the clock period.
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(a) (b) (c)

(d) (e) (f)
Figure 9. Perturbation of translation rates. (a,b) X-dependent translation is blocked (k4 = 0). mRNA (a) and protein
(b) levels are plotted against time. Initial conditions given by each of the markers in Figure 7a. (c–f) Partial block of
translation rates. M and P are plotted against time for larger (c) and smaller (d) translation rates. (e) Time-averaged levels of
M and P (Equation (4)) are plotted against the parameter k4. (f) The period of the oscillator is plotted against the parameter
k4. Equation (2) were solved numerically. Other parameter values as in Table 1.

4. Discussion

In homeostatic systems the presence of negative feedback loops can lead to the prod-
uct(s) of a pathway repressing further transcription, thus resulting in a stable steady state.
In oscillatory systems negative feedback loops in the presence of delays can give rise to
oscillatory gene expression patterns.

Post-transcriptional modifications encompass a wide range of processes that involve
the processing, translation and stability of mRNAs. Whilst they have been shown to
play a crucial role in the regulation of the circadian oscillator, far less is known about
the role of post transcriptional modifications in the Notch signalling pathway. Indeed,
most mathematical models of mRNA degradation and translation in the Notch signalling
pathway assume that such processes are linear and unregulated. In this study we consider
a feedback loop that ultimately results in the translation rate of a protein increasingly
sigmoidally with protein levels (i.e., a positive feedback loop). Our results show that, in
principle, such post-transcriptional regulation can give rise to a system that is reminiscent
of the FitzHugh-Nagumo [22,23] model of nerve excitation [13]. The model possesses a
rich family of dynamical behaviours that a cell could in principle use to regulate aspects of
its behaviour.
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For intermediate background transcription rates, the model is excitable. In this regime
small perturbations to the steady state result in the system quickly returning to steady
state. However, a sufficiently large perturbation results in a transient pulse of protein levels
before the system eventually returns to the stable steady state. Notably, it has previously
been suggested that the segmentation clock oscillator is excitable [24]. Whilst it has been
shown that a Yap/Hippo/NICD axis regulates the segmentation clock, the precise details
of the molecular circuitry that underlies such excitability have not been determined.

For larger transcription rates the model is bistable: there is a stable steady state and a
stable limit cycle. Depending on the initial conditions that are chosen, model solutions tend
to one of the identified attractors. Moreover, upon the inclusion of additive white noise, the
model solutions can switch between the two stable states, behaviour that is reminiscent of
observations of intermittent oscillations in isolated zebrafish PSM cells [19]. Notably, in the
previous study the authors considered a Stuart Landau model, which has a supercritical
Hopf bifurcation. In the proposed model, intermittent oscillations can be observed close
to the onset of an unstable limit cycle (and hence a subcritical Hopf bifurcation). This
allows for the possibility of noise to switch the system between large amplitude limit cycle
solutions and a stable steady state.

Phenomenology in the model is consistent with some experimental observations of the
zebrafish segmentation clock. When Notch signalling is inhibited, via DAPT treatment [25],
the oscillator period increases. Moreover, when levels of the Notch ligand DeltaD are
increased, the clock period decreases [26]. Together, these results suggest that in the
zebrafish segmentation clock, levels of Notch signalling are anticorrelated with the clock
period. These results are consistent with the predicted dependence of the oscillator period
on the transcription rate k1 (see Figure 8). However, it has been shown in mouse and chick
embryos that pharmacological perturbation that resulted in increased levels of NICD are
correlated with a longer clock period [20]. A more detailed exploration of the model is
required to investigate if the computed dependence of oscillator period on the parameter
k1 is universal or specific to the parameter values chosen.

A further prediction of the model is that a reduction in the transcription rate could
lead to higher levels of mRNA. In a system of uncoupled cellular oscillators, where one
samples the average level of mRNA using a technique such as qPCR, the steady state level
of mRNA measured close to the point where oscillations are lost will be higher than the
average over the oscillatory cycle. Hence one could observe that, at the population average
level, transcriptional inhibition counterintuitively results in an increase in mRNA levels.

In this study a reference set of parameter values has been chosen based upon a previous
model of delayed negative feedback oscillations. So as to allow focus of the interaction
between nonlinearities in translation and transcription, we have not explicitly accounted
for delays that represent, for example, splicing and transport. Moreover, we have focussed
here only on the sensitivity of model solutions to the parameter k1 as it is experimentally
accessible. In a future study we will systematically explore model behaviour in a more
general setting.

The quasi-steady state approximation for the variable X allows for the model analysis
to be simplified and therefore for parallels with excitable medium theory to be explored.
Whilst the quasi-steady state approximation could be realised, for example, if X were
relatively unstable and produced at a relatively large rate, further experimental work is
required to firstly identify molecular regulators of post-transcriptional regulation and
then to quantify their kinetics. In mouse neural progenitors [15] it has been identified
that transcription of the miRNA mir-9 is coregulated with transcription of the Hes1 gene.
However, in this system mir-9 is found to be relatively stable and accumulates slowly over
many cycles of the Hes1 oscillators.

It is a well-established result that combining positive and negative loops can give rise
to nonlinear behaviours such as excitability. Here the major novelty is the application of this
idea to the Notch signalling pathway. However, in the derivation of the proposed model we
hypothesised that mRNA translation is negatively regulated by an unidentified molecule
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X. Whilst there are prospective molecular candidates that could satisfy the assumptions
made in the model development, further work is required to experimentally determine the
molecular players.
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