170 research outputs found
Operationalisation of ecological compensation - Obstacles and ways forward
Ecological compensation (EC) has been proposed as an important tool for stopping the loss of biodiversity and natural values. However, there are few studies on its actual operationalisation and there is high uncertainty about how it should be designed and implemented to be an effective way of performing nature conservation. In this study we focus on ecological compensation in Sweden, a country where it is in the process of being implemented more broadly. Using interviews and a workshop we investigate how the work with the implementation is carried out and what challenges exist. The results show that implementation of EC is at an early stage of development and there are many practical obstacles, linked to both legislation and routines in the planning processes. There is a lack of holistic perspective and large-scale thinking, a quite strong focus on a small number of individual species, and an overall attitude that anything is better than nothing, all of which can have negative consequences for biodiversity conservation overall. Based on the results we discuss the need for better integration of EC into the entire decision-making process and for a holistic approach to preservation of biodiversity and ecosystem services, by increasing the focus on landscape perspective and considering delays in compensation outcomes. There is also a need for a national level standard for EC, making good and worse examples of compensation measures available and systematic monitoring of EC projects. Finally, a spatially explicit database to document all EC areas should be introduced both to ensure consistency in protection from future development plans and to enable long-term monitoring of EC outcomes
DNA methylation in ATRA-treated leukemia cell lines lacking a PML-RAR chromosome translocation
A deficient retinoic acid signaling has been suggested to be an important cause of the clinical inefficacy of all-trans retinoic acid (ATRA) therapy in nonpromyelocytic (non-PML) forms of acute myeloid leukemia (AML). The general aim of the present work was to explore novel ways to take advantage of the anti-leukemic potential of ATRA, and, specifically, to search for a synergism between ATRA and epigenetic drugs. Because previous reports have found no major influence of ATRA on DNA methylation, we investigated whether ATRA-mediated differentiation of the U937 and HL-60 AML cell lines, both lacking a PML-retinoic acid receptor (RAR) fusion product, is accompanied by early-appearing and weak changes in CpG methylation. We report that in HL-60 cells, by using a highly quantitative analysis of a set of genes found to be abnormally expressed in AML, polymerase chain reaction (PCR)-amplified p16 gene promoter molecules (each with 15 CpG sites), exhibited a CpG methylation level of 0-4% in untreated cells, which increased to 4-21% after treatment with ATRA for seven days. In contrast to HL-60 cells, U937 cells exhibited a very high CpG methylation level in p16, and ATRA did not influence the promoter methylation of this gene. In the total CCGG sites of the genome, analysed using a methylation-sensitive restriction enzyme, CpG methylation was significantly lower in ATRA-treated HL-60 (p<0.01) and U937 cells (p<0.05) than in controls. Taken together, our findings show that ATRA can influence DNA methylation, and suggest that future research should investigate whether epigenetic modulation may evoke a clinical effect of ATRA in leukemia
Heme oxygenase-1 derived carbon monoxide permits maturation of myeloid cells
Critical functions of the immune system are maintained by the ability of myeloid progenitors to differentiate and mature into macrophages. We hypothesized that the cytoprotective gas molecule carbon monoxide (CO), generated endogenously by heme oxygenases (HO), promotes differentiation of progenitors into functional macrophages. Deletion of HO-1, specifically in the myeloid lineage (Lyz-Cre:Hmox1flfl), attenuated the ability of myeloid progenitors to differentiate toward macrophages and decreased the expression of macrophage markers, CD14 and macrophage colony-stimulating factor receptor (MCSFR). We showed that HO-1 and CO induced CD14 expression and efficiently increased expansion and differentiation of myeloid cells into macrophages. Further, CO sensitized myeloid cells to treatment with MCSF at low doses by increasing MCSFR expression, mediated partially through a PI3K-Akt-dependent mechanism. Exposure of mice to CO in a model of marginal bone marrow transplantation significantly improved donor myeloid cell engraftment efficiency, expansion and differentiation, which corresponded to increased serum levels of GM-CSF, IL-1α and MCP-1. Collectively, we conclude that HO-1 and CO in part are critical for myeloid cell differentiation. CO may prove to be a novel therapeutic agent to improve functional recovery of bone marrow cells in patients undergoing irradiation, chemotherapy and/or bone marrow transplantation
Segmented Filamentous Bacteria – Metabolism Meets Immunity
Segmented filamentous bacteria (SFB) are a group of host-adapted, commensal organisms that attach to the ileal epithelium of vertebrate and invertebrate hosts. A genetic relative of the genus Clostridium, these morphologically unique bacteria display a replication and differentiation lifecycle initiated by epithelial tissue binding and filamentation. SFB intimately bind to the surface of absorptive intestinal epithelium without inducing an inflammatory response. Rather, their presence impacts the generation of innate and differentiation of acquired immunity, which impact the clearance of extracellular bacterial or fungal pathogens in the gastrointestinal and respiratory tracts. SFB have recently garnered attention due to their role in promoting adaptive and innate immunity in mice and rats through the differentiation and maturation of Th17 cells in the intestinal tract and production of immunoglobulin A (IgA). SFB are the first commensal bacteria identified that impact the maturation and development of Th17 cells in mice. Recently, microbiome studies have revealed the presence of Candidatus Arthromitus (occasionally designated as Candidatus Savagella), a proposed candidate species of SFB, in higher proportions in higher-performing flocks as compared to matched lower-performing flocks, suggesting that SFB may serve to establish a healthy gut and protect commercial turkeys from pathogens resulting in morbidity and decreased performance. In this review we seek to describe the life cycle, host specificity, and genetic capabilities of SFB, such as bacterial metabolism, and how these factors influence the host immunity and microbiome. Although the role of SFB to induce antigen-specific Th17 cells in poultry is unknown, they may play an important role in modulating the immune response in the intestinal tract to promote resistance against some infectious diseases and promote food-safety. This review demonstrates the importance of studying and further characterizing commensal, host-specific bacteria in food-producing animals and their importance to animal health
Limit Cycle Instability of Proton Beams Generated by Nonlinear Electron-Cooling Force
This research was sponsored by the National Science Foundation Grant NSF PHY-931478
The Beam Transfer Function Experiments: CE-37
This research was sponsored by the National Science Foundation Grant NSF PHY-931478
γ-Aminobutyric acid (GABA) signalling in human pancreatic islets is altered in type 2 diabetes
AIMS/HYPOTHESIS: γ-Aminobutyric acid (GABA) is a signalling molecule in the interstitial space in pancreatic islets. We examined the expression and function of the GABA signalling system components in human pancreatic islets from normoglycaemic and type 2 diabetic individuals. METHODS: Expression of GABA signalling system components was studied by microarray, quantitative PCR analysis, immunohistochemistry and patch-clamp experiments on cells in intact islets. Hormone release was measured from intact islets. RESULTS: The GABA signalling system was compromised in islets from type 2 diabetic individuals, where the expression of the genes encoding the α1, α2, β2 and β3 GABA(A) channel subunits was downregulated. GABA originating within the islets evoked tonic currents in the cells. The currents were enhanced by pentobarbital and inhibited by the GABA(A) receptor antagonist, SR95531. The effects of SR95531 on hormone release revealed that activation of GABA(A) channels (GABA(A) receptors) decreased both insulin and glucagon secretion. The GABA(B) receptor antagonist, CPG55845, increased insulin release in islets (16.7 mmol/l glucose) from normoglycaemic and type 2 diabetic individuals. CONCLUSIONS/INTERPRETATION: Interstitial GABA activates GABA(A) channels and GABA(B) receptors and effectively modulates hormone release in islets from type 2 diabetic and normoglycaemic individuals
Self-Organization of the Escherichia coli Chemotaxis Network Imaged with Super-Resolution Light Microscopy
Photoactivated localization microscopy analysis of chemotaxis receptors in bacteria suggests that the non-random organization of these proteins results from random self-assembly of clusters without direct cytoskeletal involvement or active transport
- …