37 research outputs found

    Polarimetric Calibration of Large-Aperture Telescopes II: The sub-aperture method

    Full text link
    A new method for absolute polarimetric calibration of large telescopes is presented. The proposed method is highly accurate and is based on the calibration of a small sub-aperture, which is then extended to the full system by means of actual observations of an astronomical source. The calibration procedure is described in detail along with numerical simulations that explore its robustness and accuracy. The advantages and disadvantages of this technique with respect to other possible alternatives are discussed.Comment: Journal of the Optical Society of America-A, submitte

    Can a negative-mass cosmology explain dark matter and dark energy?

    Full text link
    A recent study by Farnes (2018) proposed an alternative cosmological model in which both dark matter and dark energy are replaced with a single fluid of negative mass. This paper presents a critical review of that model. A number of problems and discrepancies with observations are identified. For instance, the predicted shape and density of galactic dark matter halos are incorrect. Also, halos would need to be less massive than the baryonic component otherwise they would become gravitationally unstable. Perhaps the most challenging problem in this theory is the presence of a large-scale version of the `runaway' effect, which would result in all galaxies moving in random directions at nearly the speed of light. Other more general issues regarding negative mass in general relativity are discussed, such as the possibility of time-travel paradoxes.Comment: Accepted for publication in A&

    Polarimetric Calibration of Large-Aperture Telescopes I: The Beam-Expansion Method

    Full text link
    This paper describes a concept for the high-accuracy absolute calibration of the instrumental polarization introduced by the primary mirror of a large-aperture telescope. This procedure requires a small aperture with polarization calibration optics (e.g., mounted on the dome) followed by a lens that opens the beam to illuminate the entire surface of the mirror. The Jones matrix corresponding to this calibration setup (with a diverging incident beam) is related to that of the normal observing setup (with a collimated incident beam) by an approximate correction term. Numerical models of parabolic on-axis and off-axis mirrors with surface imperfections are used to explore its accuracy.Comment: Journal of the Optical Society of America-A, in pres

    Search for torsional oscillations in isolated sunspots

    Full text link
    In this work we seek evidence for global torsional oscillations in alpha sunspots. We have used long time series of continuum intensity and magnetic field vector maps from the Helioseismic and Magnetic Imager (HMI) instrument on board the Solar Dynamics Observatory (SDO) spacecraft. The time series analysed here span the total disk passage of 25 isolated sunspots. We found no evidence of global long-term periodic oscillations in the azimuthal angle of the sunspot magnetic field within ∼\sim 1 degree. This study could help us to understand the sunspot dynamics and its internal structure

    A Hot Downflowing Model Atmosphere For Umbral Flashes And The Physical Properties Of Their Dark Fibrils

    Get PDF
    We perform NLTE inversions in a large set of umbral flashes, including the dark fibrils visible within them, and in the quiescent umbra by using the inversion code NICOLE on a set of full Stokes high-resolution Ca II 8542 A observations of a sunspot at disk center. We find that the dark structures have Stokes profiles that are distinct from those of the quiescent and flashed regions. They are best reproduced by atmospheres that are more similar to the flashed atmosphere in terms of velocities, even if with reduced amplitudes. We also find two sets of solutions that finely fit the flashed profiles: a set that is upflowing, featuring a transition region that is deeper than in the quiescent case and preceded by a slight dip in temperature, and a second solution with a hotter atmosphere in the chromosphere but featuring downflows close to the speed of sound at such heights. Such downflows may be related, or even dependent, on the presence of coronal loops, rooted in the umbra of sunspots, as is the case in the region analyzed. Similar loops have been recently observed to have supersonic downflows in the transition region and are consistent with the earlier "sunspot plumes" which were invariably found to display strong downflows in sunspots. Finally we find, on average, a magnetic field reduction in the flashed areas, suggesting that the shock pressure is moving field lines in the upper layers.Comment: Accepted in June for publication at ApJ. Comments to [email protected] or [email protected]

    SPINOR: Visible and Infrared Spectro-Polarimetry at the National Solar Observatory

    Full text link
    SPINOR is a new spectro-polarimeter that will serve as a facility instrument for the Dunn Solar Telescope at the National Solar Observatory. This instrument is capable of achromatic polarimetry over a very broad range of wavelengths, from 430 up to 1600 nm, allowing for the simultaneous observation of several visible and infrared spectral regions with full Stokes polarimetry. Another key feature of the design is its flexibility to observe virtually any combination of spectral lines, limited only by practical considerations (e.g., the number of detectors available, space on the optical bench, etc).Comment: To appear in Solar Physics. Note: Figures are low resolution versions due to file size limitation

    Oort cloud perturbations as a source of hyperbolic Earth impactors

    Full text link
    The observation of interstellar objects 1I/'Oumuamua and 2I/Borisov suggests the existence of a larger population of smaller projectiles that impact our planet with unbound orbits. We analyze an asteroidal grazing meteor (FH1) recorded by the Finnish Fireball Network on October 23, 2022. FH1 displayed a likely hyperbolic orbit lying on the ecliptic plane with an estimated velocity excess of ∼\sim0.7 km \,s−1^{-1} at impact. FH1 may either be an interstellar object, indicating a high-strength bias in this population, or an Oort cloud object, which would reinforce migration-based solar system models. Furthermore, under the calculated uncertainties, FH1 could potentially be associated with the passage of Scholz's binary star system. Statistical evaluation of uncertainties in the CNEOS database and study of its hyperbolic fireballs reveals an anisotropic geocentric radiant distribution and low orbital inclinations, challenging the assumption of a randomly incoming interstellar population. Orbital integrations suggest that the event on March 9, 2017 (IM2) from CNEOS may have experienced gravitational perturbation during the Scholz fly-by, contingent upon velocity overestimation within the expected range. These findings suggest that apparent interstellar meteors may, in fact, be the result of accelerated meteoroid impacts caused by close encounters with massive objects within or passing through our solar system.Comment: Accepted for publication in Icaru
    corecore