312 research outputs found

    Performance Evaluation of Block Acquisition and Tracking Algorithms Using an Open Source GPS Receiver Platform

    Get PDF
    Location technologies have many applications in wireless communications, military and space missions, etc. US Global Positioning System (GPS) and other existing and emerging Global Navigation Satellite Systems (GNSS) are expected to provide accurate location information to enable such applications. While GNSS systems perform very well in strong signal conditions, their operation in many urban, indoor, and space applications is not robust or even impossible due to weak signals and strong distortions. The search for less costly, faster and more sensitive receivers is still in progress. As the research community addresses more and more complicated phenomena there exists a demand on flexible multimode reference receivers, associated SDKs, and development platforms which may accelerate and facilitate the research. One of such concepts is the software GPS/GNSS receiver (GPS SDR) which permits a facilitated access to algorithmic libraries and a possibility to integrate more advanced algorithms without hardware and essential software updates. The GNU-SDR and GPS-SDR open source receiver platforms are such popular examples. This paper evaluates the performance of recently proposed block-corelator techniques for acquisition and tracking of GPS signals using open source GPS-SDR platform

    Development of the electroweak phase transition and baryogenesis

    Full text link
    We investigate the evolution of the electroweak phase transition, using a one-Higgs effective potential that can be regarded as an approximation for the Minimal Supersymmetric Standard Model. The phase transition occurs in a small interval around a temperature T_t below the critical one. We calculate this temperature as a function of the parameters of the potential and of a damping coefficient related to the viscosity of the plasma. The parameters that are relevant for baryogenesis, such as the velocity and thickness of the walls of bubbles and the value of the Higgs field inside them, change significantly in the range of temperatures where the first-order phase transition can occur. However, we find that in the likely interval for T_t there is no significant variation of these parameters. Furthermore, the temperature T_t is in general not far below the temperature at which bubbles begin to nucleate.Comment: 26 pages, 7 figures; typos corrected, reference adde

    Primordial Black Holes: Observational Characteristics of The Final Evaporation

    Full text link
    Many early universe theories predict the creation of Primordial Black Holes (PBHs). PBHs could have masses ranging from the Planck mass to 10^5 solar masses or higher depending on the size of the universe at formation. A Black Hole (BH) has a Hawking temperature which is inversely proportional to its mass. Hence a sufficiently small BH will quasi-thermally radiate particles at an ever-increasing rate as emission lowers its mass and raises its temperature. The final moments of this evaporation phase should be explosive and its description is dependent on the particle physics model. In this work we investigate the final few seconds of BH evaporation, using the Standard Model and incorporating the most recent Large Hadron Collider (LHC) results, and provide a new parameterization for the instantaneous emission spectrum. We calculate for the first time energy-dependent PBH burst light curves in the GeV/TeV energy range. Moreover, we explore PBH burst search methods and potential observational PBH burst signatures. We have found a unique signature in the PBH burst light curves that may be detectable by GeV/TeV gamma-ray observatories such as the High Altitude Water Cerenkov (HAWC) observatory. The implications of beyond the Standard Model theories on the PBH burst observational characteristics are also discussed, including potential sensitivity of the instantaneous photon detection rate to a squark threshold in the 5 -10 TeV range.Comment: Accepted to Astroparticle Physics Journal (71 Pages, 22 Figures

    High Temperature Matter and Gamma Ray Spectra from Microscopic Black Holes

    Full text link
    The relativistic viscous fluid equations describing the outflow of high temperature matter created via Hawking radiation from microscopic black holes are solved numerically for a realistic equation of state. We focus on black holes with initial temperatures greater than 100 GeV and lifetimes less than 6 days. The spectra of direct photons and photons from π0\pi^0 decay are calculated for energies greater than 1 GeV. We calculate the diffuse gamma ray spectrum from black holes distributed in our galactic halo. However, the most promising route for their observation is to search for point sources emitting gamma rays of ever-increasing energy.Comment: 33 pages, 13 figures, to be submitted to PR

    Baryon inhomogeneity generation via cosmic strings at QCD scale and its effects on nucleosynthesis

    Full text link
    We have earlier shown that cosmic strings moving through the plasma at the time of a first order quark-hadron transition in the early universe can generate large scale baryon inhomogeneities. In this paper, we calculate detailed structure of these inhomogeneities at the quark-hadron transition. Our calculations show that the inhomogeneities generated by cosmic string wakes can strongly affect nucleosynthesis calculations. A comparison with observational data suggests that such baryon inhomogeneities should not have existed at the nucleosynthesis epoch. If this disagreement holds with more accurate observations, then it will lead to the conclusions that cosmic string formation scales above 1014101510^{14} - 10^{15} GeV may not be consistent with nucleosynthesis and CMBR observations. Alternatively, some other input in our calculation should be constrained, for example, if the average string velocity remains sufficiently small so that significant density perturbations are never produced at the QCD scale, or if strings move ultra-relativistically so that string wakes are very thin, trapping negligible amount of baryons. Finally, if quark-hadron transition is not of first order then our calculations do not apply.Comment: 24 pages, 5 figures, minor changes, version to appear in Phys. Rev.

    Relics of the Cosmological QCD Phase Transition

    Full text link
    The abundance and size distribution of quark nuggets (QN), formed a few microseconds after the big bang due to first order QCD phase transition in the early universe, has been estimated. It appears that stable QNs could be a viable candidate for cosmological dark matter. The evolution of baryon inhomogeneity due to evaporated (unstable) QNs are also examined.Comment: To appear in Physical Review

    Effect of pre-existing baryon inhomogeneities on the dynamics of quark-hadron transition

    Get PDF
    Baryon number inhomogeneities may be generated during the epoch when the baryon asymmetry of the universe is produced, e.g. at the electroweak phase transition. The regions with excess baryon number will have a lower temperature than the background temperature of the universe. Also the value of the quark hadron transition temperature TcT_c will be different in these regions as compared to the background region. Since a first-order quark hadron transition is very susceptible to small changes in temperature, we investigate the effect of the presence of such baryonic lumps on the dynamics of quark-hadron transition. We find that the phase transition is delayed in these lumps for significant overdensities. Consequently, we argue that baryon concentration in these regions grows by the end of the transition. We briefly discuss some models which may give rise to such high overdensities at the onset of the quark-hadron transition.Comment: 16 pages, no figures, minor changes, version to appear in Phys. Rev.

    Black Hole Chromosphere at the LHC

    Full text link
    If the scale of quantum gravity is near a TeV, black holes will be copiously produced at the LHC. In this work we study the main properties of the light descendants of these black holes. We show that the emitted partons are closely spaced outside the horizon, and hence they do not fragment into hadrons in vacuum but more likely into a kind of quark-gluon plasma. Consequently, the thermal emission occurs far from the horizon, at a temperature characteristic of the QCD scale. We analyze the energy spectrum of the particles emerging from the "chromosphere", and find that the hard hadronic jets are almost entirely suppressed. They are replaced by an isotropic distribution of soft photons and hadrons, with hundreds of particles in the GeV range. This provides a new distinctive signature for black hole events at LHC.Comment: Incorporates changes made for the version to be published in Phys. Rev. D. Additional details provided on the effect of the chromosphere in cosmic ray shower

    Bounds from Primordial Black Holes with a Near Critical Collapse Initial Mass Function

    Get PDF
    Recent numerical evidence suggests that a mass spectrum of primordial black holes (PBHs) is produced as a consequence of near critical gravitational collapse. Assuming that these holes formed from the initial density perturbations seeded by inflation, we calculate model independent upper bounds on the mass variance at the reheating temperature by requiring the mass density not exceed the critical density and the photon emission not exceed current diffuse gamma-ray measurements. We then translate these results into bounds on the spectral index n by utilizing the COBE data to normalize the mass variance at large scales, assuming a constant power law, then scaling this result to the reheating temperature. We find that our bounds on n differ substantially (\delta n > 0.05) from those calculated using initial mass functions derived under the assumption that the black hole mass is proportional to the horizon mass at the collapse epoch. We also find a change in the shape of the diffuse gamma-ray spectrum which results from the Hawking radiation. Finally, we study the impact of a nonzero cosmological constant and find that the bounds on n are strengthened considerably if the universe is indeed vacuum-energy dominated today.Comment: 24 pages, REVTeX, 5 figures; minor typos fixed, two refs added, version to be published in PR
    corecore