19 research outputs found

    Experimental and numerical results of active flow control on a highly loaded stator cascade

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.This article presents experimental and numerical results for a compressor cascade with active flow control. Steady and pulsed blowing has been used to control the secondary flow and separation characteristics of a highly loaded controlled diffusion airfoil. Investigations were performed at the design incidence for blowing ratios from approximately 0.7 to 3.0 (jet-to-inlet velocity) and a Reynolds number of 840 000 (based on axial chord and inlet velocity). Detailed flow field data were collected using a five-hole pressure probe, pressure taps on the blade surfaces, and time-resolved Particle Image Velocimetry. Unsteady Reynolds-averaged Navier–Stokes simulations were performed for a wide range of flow control parameters. The experimental and numerical results are used to understand the interaction between the jet and the passage flow. The benefit of the flow control on the cascade performance is weighted against the costs of the actuation by introducing an efficiency which takes the presence of the jets into account.DFG, SFB 557, Beeinflussung komplexer turbulenter Scherströmunge

    Gettysburg College Sustainability Proposal

    Full text link
    In the fall of 2011, the Environmental Studies capstone class led by Professor Rutherford Platt was asked to write Gettysburg College’s first Sustainability Plan. The goal of the plan was to develop specific sustainable practices for the campus that were related to the three pillars of sustainability: economic, social, and environmental, and how integrating diligent sustainable practices into each of these respected pillars will result in a more conscious campus, community, and future. In 2010, Gettysburg College turned to the Sustainability Tracking Assessment and Rating System (STARS) to quantify the institution’s sustainability efforts, providing a self-check mechanism to encourage sustainability applications to all aspects of the College. The American College and University Presidents’ Climate Commitment was signed in 2007 by former Gettysburg College President Katherine Haley Will, declaring that Gettysburg College would become carbon neutral by 2032. Gettysburg College has made large strides in the search for sustainability, and aims to continue its dedication to furthering sustainable practice. The following plan outlines the six priority areas identified by the Capstone class: progress of the American College and University Presidents’ Climate Commitment, Dining Services, campus green space, community outreach, integration of sustainability into the Gettysburg College Curriculum, and the Sustainability Advisory Committee. The first priority area identified was monitoring and upholding the American College and University Presidents’ Climate Commitment (ACUPCC). Though creating new sustainability initiatives on campus is the driving force towards an increasingly sustainable college and community, it is imperative that these goals be carried out in full to maximize beneficial returns. In order to reach carbon neutrality, Gettysburg College hopes to increase energy efficiency in buildings, incorporate renewable energy sources on campus, and mitigate remaining emissions through the purchase of carbon offsets. To further the College’s progress, it is proposed that Gettysburg College continue its energy-efficient appliance purchasing policy, as well as create a policy to offset all greenhouse gas emissions generated by air travel for students study abroad. As stated by the ACUPCC, a Sustainability Committee should take responsibility for the updates and progress reports required to meet the goal of carbon neutrality. The second priority area identified was sustainability in Dining Services. Gettysburg College is home to 2,600 students, all of whom require three full meals a day. Dining Services accounts for a large fraction of Gettysburg College’s sustainability efforts, already implementing sustainability through composting, buying local produce, and using biodegradable products. The proposed on-campus sales cuts of non-reusable to-go items, a change in campus mentality on food waste, and improved composting practices will translate to an increasingly sustainable campus, as well as a well-fed campus body. The third priority was maintaining green space on campus. Ranked as the 23rd most beautiful campus in the United States by The Best Colleges, Gettysburg College utilizes campus green space to create an atmosphere that is conducive to activity as well as tranquility. The plan proposes that Gettysburg College and its grounds facilities continue their exceptional efforts, focusing on increasing the use of the student garden, creating a new rain garden or social area on campus, and converting unnecessary parking lots into green space. As these additions are completed, they must be introduced to the student body and faculty alike to assure these areas are known and utilized. The fourth priority was utilizing community outreach to spread awareness of sustainability initiatives on and off campus. To connect the sustainability-geared changes proposed in this plan, community outreach at Gettysburg College is assessed to estimate how well these initiatives are communicated and promoted to both potential and enrolled students, faculty, and other concerned parties. To evaluate the efficiency of communication at Gettysburg College, a quantitative assessment is presented to measure the ease of finding the sustainability webpage, the quality of sustainability-related topics available on the webpage, and quality of webpage design. The webpage is in need of improved text to image ratios, locations of sustainability topics, and data displays. Despite not having a link to the sustainability webpage on the Gettysburg College homepage, sustainability events should be covered and presented on the rotational news feed found on the homepage to maximize outreach to interested parties or simply to add to the definition of Gettysburg College. The fifth priority was integrating sustainability into the Curriculum to build a culture on campus that values academic rigor, supports students as they cultivate intellectual and civic passions, and promotes the development of healthy social relationships and behaviors. The proposed Sustainability Committee on Sustainability in the Curriculum (SCC) will hold sustainability workshops for faculty with the aim to instill sustainability into all academic disciplines, providing all Gettysburg graduates with a means to approach their professional careers in a fashion that is conscious of sustainability. The sixth and last priority was the Sustainability Advisory Committee. Established in 2007, the Sustainability Advisory Committee is currently under review, but it is recommended that the committee restructure itself in accordance with the new Sustainability Committee Bylaws. These bylaws aim to define the purposes, membership, governance, and involvement with the college. With a clearly defined set of goals and methodology, the Sustainability Advisory Committee will be able to improve the solidarity of the sustainability movement on campus as a whole. By following the propositions laid out in the Gettysburg College Sustainability Plan, the student body, faculty, and community alike will become a part of a multi-faceted progression toward a more sustainable future

    Requirements for a methodology for the analysis and assessment of technological capability in research and technology organizations

    No full text
    The advancing globalization and simultaneous liberalization of the markets not only have a tremendous influence on companies in the manufacturing industry but also lead to new challenges for the research sector. Especially Research and Technology Organizations (RTOs) as bridges of basic research and the industry favor technological change on the one hand and increase the competitiveness of the industry through innovative solutions on the other. (Arnold, Clark, Jávorka 2010, pp. 9-10; Breznik 2015, pp. 24-25). The resulting high need for technological innovation pushes RTOs to intensify competition for technology leadership to sustain market competitiveness. In this regard, RTOs must be able to develop technological solutions that translate results from research and development activities into state-of-the-art products and services. This can only be achieved when technological resources and competences are efficiently and effectively used to build up competitive advantages. (Kröll 2007, p. 11; Figueiredo 2014, p. 83; Zehnder 1997, p. 20) Therefore, the technological capability of RTOs needs to be defined and analyzed. In this context, the paper aims to contribute to the development of a suitable methodology for systematically analyzing and evaluating the technological capability of RTOs using a standardized approach. Hence, a profound understanding of technological capability of RTOs is to be developed, which will enable the derivation of requirements to be met by an analysis and evaluation methodology which needs to be developed based on the identified requirements of this paper in the future. Subsequently, various methods and approaches for assessing the technological capability will be discussed and evaluated with respect to the specific requirements of RTOs. The outlook is to outline the further procedure for the development of a suitable methodology for the analysis and evaluation of technological performance

    Development of an organizational structure model as a basis for the assessment of the digital transformation of organizations

    No full text
    The digital transformation has a significant impact on organizations of all sectors. New business models and business processes are establishing themselves; the development of products and services is changing as well as the interaction with customers, partners and suppliers. As these changes create new requirements for organizations, they need to re-orientate and adapt to these requirements. Accordingly, they must know their own position within this changing environment. Against this background, organizational processes and models need to be revised. The aim of this contribution is the development of a model that describes the organizational structure consisting of relevant elements of corporate development and their interaction in the context of digital transformation. This serves as a basis for the derivation and structuring of assessment items with regard to the creation of an assessment model, which will allow the self-assessment of the status quo of organizations on their specific path of digital transformation

    Industry 4.0 Visions and Reality- Status in Norway

    No full text
    Part 5: Industry 4.0 ImplementationsInternational audienceThe concept and vision of Industry 4.0 has been around for almost a decade and gain a lot of momentum and attraction globally. Central to the vision of Industry 4.0 is the concept of a “Cyber-Physical system”, linking the IT elements of an enterprise (Cyber) with the physical system (man and machine) of an enterprise. This vision is well known and promoted as crucial in radically transforming todays manufacturing industry. While there is a plethora of papers and studies of the various “cyber” aspects, the concept, visions, benefits as well as the downsides of Industry 4.0, few papers have much to say about the actual implementation. Based on a digital maturity mapping of ten front line manufacturing enterprises in Norway this paper analyses implementation at shop floor level of both cyber and physical system and their interaction. From the survey data a clear picture emerges of the development of a cyber system, as well as worker usage and benefit of the system. However, the two systems don’t interact very well, worker interaction is limited to plain old keyboard usage, instead of employing more mobile, handsfree, voice based or similar interaction methods. Currently there is no cyber-physical system, rather a burgeoning cyber system poorly linked to the physical world. If the cyber-physical system is to be realized there is a need for a rethinking and upgrading of man-machine interaction
    corecore