
Use of a Simulation Environment
and Metaheuristic Algorithm for Human
Resource Management
in a Cyber-Physical System

Hankun Zhang, Borut Buchmeister, Shifeng Liu and Robert Ojstersek

Abstract At the time of Industry 4.0 and the emergence of collaborative work-
places based on the cooperation of robots (machines) and humans, the number of
human workplaces in the Industry 4.0 production system is crucial. In this chapter,
we present the use of the evolutionary computation methods that use the input data of
a real production system and transfer it through the five-stage Cyber-Physical Sys-
tem architecture into the simulation environment in order to determine the optimal
number of workers. By using these methods, we confirm the hypothesis of the impor-
tance of correctly determining the number of workers in the manufacturing process
in Industry 4.0. Number of workers’ determination has a key influence on the prod-
uct flow time, machine utilization and cost-effectiveness of a production system.
Research results show the importance and effectiveness of combining evolutionary
computation methods and simulation modelling for the purpose of implementing
the advanced approaches of Industry 4.0. The demonstrated approach of combining
evolutionary computing, simulation environments and methods of Industry 4.0 can
be used from mass customization to mass production systems for the purpose of
single-criteria or multi-criteria optimization.
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1 Introduction

The globalised world of Industry 4.0 is focused onmass customization [31], dynamic
response to product demand, and real-time optimization of the manufacturing envi-
ronment. Human Resource Management (HRM) is a very important aspect [3, 13].
HRM methods are, in Industry 4.0, considered as one of the primary sources for
appropriate work skills, capabilities, and behaviours to achieve production system
goals. In these cases, they have a significant value in the manufacturing environ-
ment. Research work done in past was focused mainly on development of human
expertise in-depth knowledge. Now scientists are developing methods of Artificial
Intelligence (AI) and Evolutionary Computation (EC) to solve different problems.
In our case, we have introduced HRM as the main objective to optimise with AI
for Job Shop Scheduling Problems (JSSP) [32, 45]. Our research work proposed a
new evolutionary algorithm combined with discrete system simulation to optimise
the number of workers on a factory production line. In this chapter, we present the
use of simulation environment in production systems, supported by the concept of
Industry 4.0, and a metaheuristic algorithm for the Minimum Number of Workers’
(MNW) determination. The fundamental research work was first presented by Zhang
et al. [45]. The MNW determination problem is a complex problem, due mainly to
the following features:

– Possible variation of the workstation capacity during the time period.
– Legal constraints on the capacity and its evolution.
– Different skills must be considered for an operator, especially in production sys-
tems involving Industry 4.0.

– Individual company expectations.

Research work presented in this chapter is limited to an HRM problem just for
MNW determination in a production system supported by Industry 4.0. The main
research contribution is a newly proposed metaheuristic algorithm and its simulation
testing on a real-world production system to achieved appropriate MNW determina-
tion.Weproposed an improved estimationmethodof theHeuristicKalmanAlgorithm
(HKA) [24] for the purpose of HRM optimization. The research problem is based on
the need to increase the productivity of the existing production system. The problem
canbe essentially solved by employing newworkers in the existing production system
or by automating the existing production system by applying the concept of Industry
4.0. In the second case, the productivity of the production system increases, and the
number of workers can be reduced or unchanged. In the following research work pre-
sented in this chapter, we want to present how important it is to correctly determine
the number of workers (MNW), when the concept of Industry 4.0 is introduced into
exiting production system. Use of the main Industry 4.0 architecture model (CPS
model) leads to an increase in productivity with a uniform workers’ workload and
the economic viability of workers for the enterprise. The presented research work
is based on applying the 5C CPS architectural model, metaheuristic algorithm and
simulation environments in order to determine the optimal number of workers in the
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production process supported by the concept of Industry 4.0. All proposed methods
are based on the Cyber-physical system [26], which is 5C (connection, conversion,
cyber, cognition, and configuration) level cloud architecture (first connection, second
conversion, third cyber, fourth cognition, and fifth configuration) based technologies.
It refers to a modern manufacturing system that offers an information-transparent
environment to facilitate asset management, HRM, provide flexibility, and maintain
productivity.

The chapter is structured as follows: in Sect. 2, the literature review is presented
in four research areas (simulation modelling, 5C CPS architecture in Industry 4.0,
HRM, andHeuristicKalmanAlgorithm). This section is followed bySect. 3, inwhich
the presentation of the 5C CPS architectural model, which is generally presented as
one of the constituent concepts of Industry 4.0. In the continuation of this section,
the model apply a real-world production system model, which serves as a reference
model throughout the whole chapter. Section 4 presents the method of evolutionary
computation calledHKA,whichwas developed during the first development phase of
our project: Implementation of HKA for the purpose of production systems’ single-
objective optimization. In Sect. 5, we present an Improved HKA (IHKA) method,
and its results are tested and displayed on benchmark test data, followed by the imple-
mentation of the IHKA for the purpose of MNW determination. At the beginning
of this section, we give some general basic knowledge and mathematical modelling
in the field of HMR and MNW determination. The following is a description of the
solution coding and the experimental part carried out in a real-world production sys-
tem. Section 6 represents a simulation modelling of the production system in which
we want to optimize a single-objective MNW parameter. The whole section is based
on a real-world example, the implementation of IHKA and simulation modelling on
the 5C CPS architectural model. Section 7 presents conclusions and further research
work.

2 Literature Review

In a time of rapid development of companies that meet in the global market with the
introduction of the Industry 4.0 concept based onmass personalization of customised
products, simulation methods are very important. The introduction of simulation
methods for the purpose of production systems’ modelling and analysing was first
presented by Emery [10], Askin and Standridge [4], who defined the basic simula-
tionmethods. Thesemethods were improved and represented on application cases by
Law andKelton [19]. In order to optimise production, researchers use a wide range of
software environments to analyse and optimise production processes [17, 29]. Due to
the wide range of different simulation methods, their advantages and disadvantages,
it is essential that the correct choice of simulation methods be made with respect to
the optimization problem’s characteristics [7]. The simulation methods are divided
into two groups: Continuous simulation, in which the simulation tracks the system
dynamics continuously over time. On the other hand, we have event-based simula-
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tion, also called an activity-based simulation, in which time is broken up into small
slices and the system state is updated according to the set of activities happening
in the time slice. Because discrete-event simulations do not have to simulate every
time slice, they can, typically, run much faster than the corresponding continuous
simulation [11]. Practical examples of discrete systems’ simulation are presented
in solving scheduling problems using linear programming [14], layout and mate-
rial flow optimization in a digital factory [8], and on production optimization [25].
The mentioned authors present various simulation methods and approaches, and, in
doing so, they discuss a problems that arise with the application of simulation meth-
ods. In the already existing and newly proposed production processes, the use of
simulation methods is particularly important in the implementation of the Industry
4.0 concept [5]. In designing production processes, authors suggest the introduction
of AI and EC [43, 44], which imply the concepts of the Internet of Things (IoT),
Cloud Computing, Cyber-Physical Systems (CPS) and Big Data in Industry 4.0.
In most cases, the authors use the CPS model as a reference architectural model for
dynamically variable production processes [36]. Several dimensional approaches are
proposed for the design of advanced mechatronic systems in production processes
[30], which differ essentially from Product Service Systems (PSS), especially in the
processing efficiency of a Big Data calculation [22]. The established architecture,
the CPS model, in relation to the implementation of Artificial Intelligence and sim-
ulation methods at all five architectural stages, is presented below with reference to
the cited research work [20]. When implementing the concept of Industry 4.0 and
its associated CPS architecture, the Human Resource Management (HRM) aspect is
particularly important. The regularity of labour load planning affects the flexibility,
productivity and efficiency of the production process significantly [12]. The HRM
area has been well researched in the past production systems [13]. In the current time
of Industry 4.0, based on the CPS architectural model, the appropriate treatment of
HRM is more and more important [3, 34]. When discussing HRM in Industry 4.0,
we also talk about collaborative workspaces that are occurring increasingly in pro-
duction systems. They will have a significant impact on the setting up and organising
of jobs in the future [47]. Recently, in this field of research, we can find the proposals
of new methods related to a holistic HRM based on the support of robotised and
automated production processes [15]. Researchers use modern approaches of AI to
determine the Near Optimum (NO) solution [45] when introducing new methods
proposed for the purpose of HRM optimization. The importance of HRM in the
production planning and scheduling [32] and the introduction of Artificial Intelli-
gence methods [1, 9, 35] present new research challenges for the future. Recently,
research results [18, 38] demonstrated the benefits of heuristic and metaheuristic
methods for the purpose of optimising production processes. Due to the complexity
of the optimization problems, the solutions mentioned refer to NP-hard or strongly
NP-hard problems. In solving strongly NP-hard problems, researchers use either
hybrid Artificial Intelligence methods based on combining the positive properties of
individual evolutionary computing methods, or solving multi-objective optimization
problems [23, 46]. Particularly deeply explored is the field of Planning and Schedul-
ing, from service activities [42] to production systems [37]. The authors implement
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Artificial Intelligence algorithms to benchmark examples [28], as well as to real-
world examples [33]. The high efficiency of modern Artificial Intelligence methods
are reflected in the implementation of the Kalman Filter approach for the purpose
of multiprocessor evolutionary computation and obtaining estimated solutions [21].
The advantage of using Heuristic Kalman Algorithm is based on ease of use and
real-world application implementation [27, 39]. The Heuristic Kalman algorithm
can act as an estimator of single-objective problems, as well as a multi-objective
problem estimator [16]. The authors [26] first used it for the purpose of production
systems single-objective optimization. Based on the obtainedNO results, researchers
were expanded, and improved their algorithm in the further development phase for
optimising multi-objective real-world problems [24].

2.1 5C CPS Architecture

A general model of 5C CPS architecture is presented in Fig. 1. It represents the
five-level architecture, which is defined as a modern mechanism for monitoring
and controlling production systems [20]. It offers an information environment for
optimising and designing the following parameters: HumanResourcesManagement,
flexibility and productivity sustainability. In the following section, we present an
application example of using an evolutionary algorithm and simulation environment,
which refers to all five levels of the architectural model.

The first level of the architectural model is a smart communication level that
relates to Plug & Play applications and open-source communication protocols to
sensor networks. The second level of data-to-information conversion level allows
intelligent evolutionary algorithms’ optimization of the expected objective to obtain

Fig. 1 The 5C CPS architecture
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optimal solutions. The third level, or the cyber level, allows the use of a digital twin
between the basic components in completed blocks, the data-time structure, and the
use of the clustering in data structures. The fourth level, or cognition level, enables
the integration of simulation environments with real-world data sets, visualization
for the user, and machine interface in collaborative diagnostic and decision mod-
els. The highest, fifth level, or so-called configuration level, refers to reconfigurable,
self-adaptive and self-optimization of the proposed evolutionary algorithms and sim-
ulation models. This architectural model shares similarity to the Internet of Things,
but this model represents a higher-level integration degree of physical and digital
elements.

In the next section, we present a real-world example of 5C CPS architecture
integrated into a production system in which, at the connection level, we proposed
smart communication and data transfer for the real-world simulation model, which
is implemented in fourth level of cognition. The second level of conversion inte-
grates the IHKA for MNW estimation and optimization. The Cyber level includes
improved solution clustering of algorithm solutions. As said before, the cognition
level integrates the simulation model with the mathematical model of IHKA. In the
final, fifth configuration level, we proposed self-adjusted solutions for the purpose
of near optimal HRM configuration.

2.2 Applied 5C CPS Architecture

The following is an introduction of the implementation of the CPS model in the case
of advanced single-objective production systems’ optimization methods. In the left
column of Table 1, we can see five levels of the above-described 5CCPS architectural
model and, presented in the right-hand column, is the architectural definition of the
real production system.

1. Smart communication level: The input data of the real production system are
captured through the analytical tools and advanced sensors systems presented in
Table 3. The main constraint is that the production system must support Industry
4.0 methodology regarding individual machine sensors and data connectivity. It
should be noted that the quality of the captured and processed input data has a
significant impact on all the following architectural levels.

2. Data to information conversion level: In our case, we use the Heuristic Kalman
Algorithm (HKA) [26] to evaluate the optimal solutions of the single-objective
(MNW determination) production system optimization. Using the estimation
method of theHKA,we can predict the optimal or almost optimal (near-optimum,
NO) solutions of several production system criteria (flow rates, utilization of
workplaces and machines, number of finished products in the simulation period,
and MNW problem).

3. Cyber level: The characteristic of HKA is that, when assessing the NO solution,
a negative noise (error) occurs, which contributes to the relative error of the
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Table 1 Applied 5C CPS model

Architecture level Production system implementation

Smart connection level Input data of a real-world production system, suitable
for the simulation model (all machines in production
systems support Industry 4.0 methodology)

Data-to-information conversion level Use of input data collected from a production system
needed for mathematical and simulation modelling
(evaluation algorithm computing)

Cyber level Use of single-objective methods to determine optimal
solutions (production system HRM and MNW
determination)

Cognition level Building a simulation model with the goal of single or
multi-objective production system optimization

Configuration level Use of self-adaptive methods with the goal of
determining optimal solutions in a real-time
environment

estimated value [45]. To this end, we use the method of clustering that allows
us to use only the best solutions. At cyber architecture level, we proposed the
Improved Heuristic Kalman Algorithm (IHKA) to obtain the best solutions.

4. Cognitive level: Based on all previously collected production system data and
built mathematical models, the construction of the simulation model follows.
The simulation model captures all production system real-world characteristics,
followed by the optimal solution decision. Depending on the complexity of the
production system and the built-in simulation model, we can choose to imple-
ment simulation scenarios [25], which allow us detailed simulation modelling
according to the previously predicted production system characteristics.

5. Configuration level: The obtained solutions from the simulation experiments
and mathematical model calculation depend on the function of the time variable,
which, in general, means that the mentioned solutions change according to the
time. To this end, we propose the introduction of self-adaptive decision-making
methods for determining NO IHKA solutions.

3 Heuristic Kalman Algorithm

The Heuristic Kalman Algorithm (HKA), as a Kalman filtering based heuristic
approach, only requires the user to set three parameters [38, 39]. The search heuristic
of the HKA is entirely different from other population-based stochastic optimization
algorithms, in that it considers the optimization problem explicitly as a measurement
process designed to give an estimate of the optimum. During the measurement pro-
cess, HKA develops a specific procedure based on the Kalman estimator to improve
the quality of the estimate obtained. HKA needs initialising the Gaussian distribu-
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Fig. 2 The flowchart of the HKA

tion, selecting the user-defined parameters, and introducing the stopping rule for
practical implementation [18]. During the HKA optimization process, first, the solu-
tions are generated by the Gaussian distribution that is parametrised by a given mean
vector with a given variance–covariance matrix, followed by the measurement pro-
cedure, and, finally, the optimum estimator of the parameters is introduced for the
next generation. Figure 2 shows the flowchart of HKA [38, 39].

4 Improved Heuristic Kalman Algorithm

Experiments show that HKA is so convergent that it is easy to fall into the local
minimum. This chapter proposes a new improved estimation method of the Heuristic
Kalman Algorithm, the IHKA. In the IHKA, a mutation operation is introduced after
the solutions are generated by the Gaussian distribution, then a function is introduced
that handles the boundary constraint, and, finally, a random number is introduced in
the updating formula of the standard deviation vector of the Gaussian generator. The
general pseudo-code of the IHKA is shown in Algorithm 1 [24].
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Algorithm 1 The general pseudo-code of the IHKA.
Step 0 Initialization. Set the size of the population , the number of 
dimensions of the actual problem , the number of top individuals under 
consideration , the slowdown coefficient , the mutation parameter 
the maximum block size of the random  and the maximum number 
of iterations max_ite. Initialise the mean vector  and the variance–
covariance vector .

Where lu(1, j) (respectively, lu(2, j)) is the jth lower bound (respectively, 
upper bound) of the problem. 
Step 1 Iteration.
For ite = 1: max_ite

Step 1.1 Random generator. Generate a population x with Ns
individuals by a Gaussian distribution parametrised by m and S:
x = mvnrnd(mvnrnd(m, diag(S), Ns)
where mvnrnd(.) is a function that generates random vectors from the 
multivariate normal distribution and diag(.) is a function that 
generates diagonal matrices or diagonals of a matrix. 
Step 1.2 For each individual in the population 
for i = 1: Ns

Step 1.2.1 Mutation operator by Algorithm 2. 
x (i, :) = mutate(x(i, :), Nd, , Bsize, ite, max_ite)
Step 1.2.2 Handling the constraints of the problem (see 
Equation (1)):
x (i, :) = handleCons(x(i, :), Gbx, Nd, lu)
where Gbx is the global best position 
Step 1.2.3 Evaluate fitness. Calculate the individual fitness f(i) 
in x (i, :). 

end
Step 1.3 Update the global best position. 
Step 1.4 Choose process. Choose the top Nξ individuals according to 
f.
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Step 1.5 Measurement process. Compute the measurement ξ and the 
variance vector V.

,

Step 1.6 Optimal estimation. Compute the posterior estimation the 
mean vector  and the variance–covariance vector .

, ,

,
where  is the slowdown factor,  is a random number vector 
generated by Logistic chaotic map,  is a function that 
calculates the average or mean value and the symbol  (respectively, 

) stands for a component-wise divide (respectively, product). 
Step 1.7 Initialise the next step. 
m = m_pe, S = S_pe

end

Mutation operator:

In order to improve the performance of the HKA in combinatorial optimization
problems, which is likely to fall into a local optimum for the fast convergence speed,
a mutation operation is introduced after the population is generated. In IHKA, a
mutation parameter is set to control the decreasing speed of the mutation probability
[46]. As the number of iterations increases, the probability of mutation operation
decreases, that is, the effect of the mutation operator decreases [46]. In the mutation
function mutate, inspired by Zhang et al. [45], this paper introduces four mutation
operators with random size; insert operator, random size move backward operator,
random size swap operator, and 2-opt operator. It should be noted that the solution
is based on the sort to decode, so the mutation operation is also based on the sorted
individual.Whenmutating, amutation operator is selected from them randomly, then
two positions are selected from the current mutated individual. After the mutation
block size is determined, the mutation operation is finally executed. Algorithm 2
shows the general pseudo-code of the mutation function mutate.
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Algorithm 2 The general pseudo-code of the .
Input: The individual before mutation xi, the number of dimensions of the 
actual problem Nd, the mutation parameter β, the maximum block size of 
the random operator Bsize, the current iteration ite and the maximum 
number of iterations max_ite.
Output: the new individual after mutation xi.
Step 1 Calculate the current mutation probability. 

Step 2 Determine whether to mutate. 
if rand < e 

Step 2.1 Select a neighbourhood structure randomly. 
ri = randi (4)
Step 2.2 Select two different positions randomly, and the first 
selected position needs to be smaller than the second one: 
Step 2.3 SI = sort(randperm(Nd, 2)).
Step 2.4 Determine the random operator block size.                          
rs = randi(min([SI(2) – SI(1), Nd – SI(2) + 1, Bsize])) 
Step 2.5 Sort the individual. 
[xiS, xiI] = sort(xi)
Step 2.6 Mutation operator. 
switch ri 
case 1 

Step 2.6.1 Random insert operation. 

case 2 
Step 2.6.2 Random move backward operation. 

case 3 
Step 2.6.3 Random swap operation. 
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otherwise
Step 2.6.4 The 2-opt. 

end
end

Handling of the constraints:

In IHKA, a handling constraints function is introduced to handle the boundary con-
straints and increases the abundance of the population. If the value of a dimension
exceeds the constraint boundary, it is replaced by random generation with a fifty per-
cent probability. There is 25% probability to assign to the corresponding dimension
value of the global optimal solution. Otherwise, it is replaced by the minimum or
maximum boundary value corresponding to less than the minimum, or greater than
the maximum, boundary value, respectively.

xi, j =

⎧
⎪⎪⎨

⎪⎪⎩

lu1, j + (
lu2, j − lu1, j

)
rand, r < 0.5

Gbx j , 0.5 ≤ r < 0.75
lu1, j , r ≥ 0.75 ∧ xi, j < lu1, j
lu2, j , r ≥ 0.75 ∧ xi, j > lu2, j

(1)

where xi, j represents the jth dimension of the ith individual in the population x
exceeds the value range, rand is a function that generates a uniformly distributed
random number in the interval (0, 1), and r is a random number generated by rand.

Random coefficient:

In order to improve the convergence performance of the HKA, a random number is
introduced in the updating formula of the Standard Deviation vector of the Gaussian
generator. Inspired by literature [37], the random number is generated by the Logistic
chaotic map.

4.1 IHKA Test

The Travelling Salesman Problem (TSP), as one of the most famous combinatorial
optimization problems, is selected as the benchmark problem to test the performance
of IHKA. We select wi29 [41], dj38 [41], eil51 [40] and eil76 [40] as the benchmark
instances. Their optimal tours have lengths 27601.17, 6659.43, 429.98 and 545.39,
respectively. In this chapter, algorithms were implemented in MATLAB and sim-
ulated in version R2017b. For each instance, algorithms are run independently 30
times. Figure 3 shows the IHKA and HKA convergence for the 4 TSP benchmark
instances. The computational statistics of the IHKA and HKA for the fitness of the
4-benchmark instances are shown in Table 2 and in Fig. 3. As can be seen from,
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Fig. 3 The IHKA and HKA convergences of the best solutions for the benchmark instances (the
horizontal dotted line is the length of the optimal tours for each instance and the “R” in the legend
is an abbreviation for runtime)
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Table 2 Computational statistics of the IHKA and HKA on the fitness for the benchmark instances

TSP Algorithm Min Max Mean Standard deviation

wi29 IHKA 27,601.20 31,406.20 29,815.70 1056.77

HKA 27,601.20 34,307.20 31,277.90 1743.08

dj38 IHKA 6659.43 8350.67 7494.76 464.09

HKA 6659.43 9842.75 8047.69 648.52

eil51 IHKA 442.25 502.73 477.91 18.25

HKA 451.98 570.28 496.61 33.66

eil76 IHKA 602.39 721.30 663.59 28.91

HKA 619.35 856.57 691.71 51.00

both IHKA and HKA can tend to converge to the global optimal in the 4 bench-
mark instances. In the same benchmark instances, the convergence speed of IHKA
is obviously lower than HKA, which reduces the possibility of falling into a local
minimum. As the dimension of the problem increases, their speed of convergence
decreases significantly. Table 2 shows that the robustness of IHKA is significantly
better than HKA in all four selected benchmark instances. For the 30 independent
runs, the mean and standard error of the IHKA is smaller than that of the HKA in all
selected benchmark instances.

5 IHKA Applied in MNW

Human Resource Management, especially MNW determination, is a critical task in
Industry 4.0 production systems. We must allocate workers appropriately due to two
resources:

– Technical resources: Are smart manufacturing equipment supported by the Indus-
try 4.0 production line where the workload per operation is calculated based on
production systems’ planning and scheduling tasks. In this case, we must assign
the human resources carefully with regard to the machine specific constraints and
demounts (utilization, workflow, control time, maintenance time, etc.).

– Human resources: Are criticalwhere they are assigned simultaneously to a job con-
sidering the same level technical resources. Specific qualifications, skills, capabil-
ities, behaviour, attitude and technical knowledge are required from the workers.

Regarding the above described technical and human resources, HRM in Industry
4.0 is based on [20]:

– Staffing: The right candidate for every jobmust be selected using extensive recruit-
ment and selectionmethods, where the potential of the candidate is very important.
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– Training: Manufacturing or service companies in Industry 4.0 must design their
own training programmes to enhance the innovative capability and knowledge of
employees.

– Compensation: The contribution of the employees to the company should be a ratio
between performance, working achievements and reward. With an appropriate
ratio, we can enhance innovation and the learning curve of the company.

– Job design: In a mass personalization production, system, the job design must be
flexible regarding tasks and responsibilities of the employees. High flexibility of
all employees can help the company to adjust quickly to the customers’ demounts.

5.1 MNWMathematical Model

The following is a mathematical model of HRM for determining MNW. The mathe-
matical model was proposed by Becker and Scholl [6], and modified by Alghazi [2].
The presented mathematical model is adapted according to the 5C CPS architectural
model and real-world production system characteristics.

Notation:

c cycle time
t time
j potential worker
i machine station
N number of task indexed h, l = 1, 2, 3, …, N
Fh the set of feasible stations that task h is assignable to
Fl the set of feasible stations that task l is assignable to
Ol the set of immediate predecessors of task l
sh starting time of task h
sl starting time of task l
t fh lateness for task h
tsh earliness for task h.

Variables:

xi jh =
{
1, if task h is assigned to station i and worker j
0, otherwise

(2)

xi jl =
{
1, if task l is assigned to station i and worker j
0, otherwise

(3)

yi j =
{
1, if potential worker j at machine station i is assigned
0, otherwise

(4)

vhl =
{
1, if task h is executed before task l
0, otherwise

(5)
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vlh =
{
1, if task l is executed before task h
0, otherwise

(6)

The main objective to minimise is MNW = ∑
i

∑
j yi j , Eqs. (7–12):

– Just one task can be assigned to an individual worker.

∑

i∈FSh

∑

j

xi jh = 1, ∀h (7)

– Cycle time assigned to a worker.

∑

h

xi jh ≤ cyi j , ∀(i ∈ Fh, j) (8)

– Individual task station time, each task assigned to a worker should be scheduled
between the workers’ machine centre star and finish times.

⎧
⎪⎨

⎪⎩

sh ≥ ∑

i∈Fh

∑

j
Si xi jh

sh ≤ ∑

i∈FSh

∑

j
(Si + c)xi jh

, ∀h (9)

– Individual task can only start when the existing task is finished.

sh ≤ sl, ∀h, l ∈ Ol (10)

– Task assigned to worker must be executed before the next task can start.

vhl + vlh � xi jh + xi jl − 1, ∀ j, h �= l ∧ i ∈ Fh ∩ Fl

sh + th � sl + (1 − vhl)
(
t fh − t sh

)
, ∀h �= l (11)

– Generalised MNW calculation regarding the upper equations.

MNW =
∑

th
c

(12)

The described mathematical model was implemented in the next section, where
we represent the solution of using evolutionary computing, IHKA for solving the
HRM problem with MNW determination in a real-world Industry 4.0 production
system.
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Fig. 4 The example of the solution coding

5.2 Solution Coding

In this chapter, the machines for the workers to check are represented by the index
of the order in the production lines (see the ‘No.’ column in Table 3). The number of
dimensions is set to Nd = machinesNum + workersNum − 1 to encode the workers
into the coding, where machinesNum and workersNum are the number of machines
and the number of workers in the problem, respectively [45]. It means that if the
number of workers is more than 1, one or more decision workersNum − 1 variables
are used as separators, which are greater than machinesNum [45]. The value range
of the jth dimension of an individual is an open interval (0, 1). In order to solve the
combinatorial optimization problem by IHKA, this chapter introduces the relative
position indexing [23] to transform the optimised solution into the discrete domain.
We sort the original solution to get the machines for each worker to check and the
order in which they check the machines. In Fig. 4, we sort the S to get S’, the decision
variable 9 is serviced as a separator, the S’ can be decoded as worker 1 checks the
machines, and its sequence is (4, 3, 2, 1), and worker 2 checks the machines, and its
sequence is (6, 8, 7, 5).

Table 3 The data of the production lines in the manufacturing enterprise E

No. Name Position (x,
y)

Checking
time (min)

No. Name Position (x,
y)

Checking
time (min)

1 A (0, 1.5) 15 9 A′ (3, 28) 15

2 B (0, 4.8) 17 10 B′ (3, 26) 17

3 C (0, 9.1) 17 11 C′ (3, 22) 17

4 D (0, 13.5) 24 12 D′ (3, 16.5) 24

5 E (0, 16.5) 55 13 E′ (3, 13.5) 55

6 F (0, 22) 28 14 F′ (3, 9.1) 28

7 G (0, 26) 17 15 G′ (3, 4.8) 17

8 H (0, 28) 17 16 H′ (3, 1.5) 17
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5.3 Computational Experiment

A manufacturing enterprise E in Slovenia has two automated production lines with
the same machines, but the order of the machines on these two production lines is
opposite. During the operation of these two production lines, workers are required to
check the machines on them. Table 3 shows the data of these two production lines in
themanufacturing enterprise E [45]. According to the Zhang et al. [45], theminimum
checking time for a worker and two workers is 380.75 and 190.36 min, respectively.

5.4 Experimental Results

For comparison, three well-known meta-heuristic algorithms, the Particle Swarm
Optimization (PSO) proposed by Eberhart and Kennedy [9] and improved by Shi and
Eberhart [35], the Multi-Phase Particle Swarm Optimization (MPPSO) proposed by
Al-Kazemi [1], and the Bare Bones Particle SwarmOptimization (BBPSO) proposed
by Kennedy [18], were selected to assess the performance of IHKA.

For all algorithms in this chapter, the size of the population Ns = 100, and the
maximum number of iterations is set tomax_ite= 1000. According to the literatures
[28, 38] and experiments, the parameter for the IHKA is set as N ξ = 10, α = 0.9, β
= 5 and Bsize = [

Nd
5 + 0.5

]
. The parameter for the PSO is set as c1 = 2.8, c2 =

1.3 and w = 0.729 [33]. The parameter for the MPPSO is set as ph = 2, pcf = 5, g
= 2, sllu = [1,min(10, Nd)] and VC =10 [1].

Figure 5 and 6 shows the convergence of 5 algorithms for the MNWwith 1 and 2
workers, respectively. The statistical analysis of the 5 algorithms for the MNWwith
1 and 2 workers are shown in (a) and (b) of Fig. 7, respectively. The computational
statistics of the 5 algorithms on the fitness for the MNW with 1 and 2 workers are
shown in Tables 4 and 5, respectively. The proposed IHKA performed well in the
MNW with 1 worker. In the MNW with 1 worker, the success rate of the improved
algorithm tofind the optimal value is 100%.However, the success rate of the improved
algorithm to find the optimal value is very low in theMNWwith 2workers. However,
the improved HKA performs better than the original HKA in both the MNW with 1
and 2 workers.
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Fig. 5 The convergence rates of the five algorithms convergences for the MNWwith 1 worker (the
“R” in the legend is an abbreviation for runtime)

The MPPSO performs the best in both the MNWwith 1 and 2 workers, while the
BBPSO performs the second. In the MNW with 1 worker, the IHKA and MPPSO
perform the same, they are the best among the 5 algorithms. The performance of the
PSO is the worst among the 5 algorithms for the MNW with 1 worker. However,
both improved HKA and original HKA perform worst among the 5 algorithms in
the MNW with 2 workers. The MPPSO and PSO are performing better among the 5
algorithms in the MNWwith 2 workers. Therefore, the improved HKA improves the
performance of the original HKA, but still needs further improvement to increase its
performance.
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Fig. 6 The convergence rates of the five algorithms convergences for the MNW with 2 workers
(the “R” in the legend is an abbreviation for runtime)
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Fig. 7 The statistical analysis of the five algorithms for the MNW with 1 and 2 workers

Table 4 Computational statistics of the five algorithms on the fitness for the MNW with 1 worker

No. Name Min Max Mean Standard deviation Success rate (%)

1 IHKA 380.75 380.75 380.75 0 100

2 HKA 380.75 380.85 380.75 0.02 93.33

3 BBPSO 380.75 380.80 380.76 0.01 86.67

4 MPPSO 380.75 380.75 380.75 0 100

5 PSO 380.75 380.85 380.76 0.02 50

Table 5 Computational statistics of the five algorithms on the fitness for the MNWwith 2 workers

No. Name Min Max Mean Standard deviation Success rate (%)

1 IHKA 190.36 191.07 190.59 0.18 6.67

2 HKA 190.36 191.16 190.88 0.24 3.33

3 BBPSO 190.36 190.47 190.37 0.02 86.67

4 MPPSO 190.36 190.41 190.37 0.01 83.33

5 PSO 190.36 190.54 190.39 0.05 63.33

6 Simulation Modelling

Simulationmodelling in 5CCPS architecture is the process of creating a smart digital
model of the physicalmodel to estimate its performance and behaviour in a real-world
production system. A smart digital simulationmodel can estimate and analyse a wide
range of production system parameters by applying a software environment. In our
case, we use Simio, simulation and scheduling software for the purpose of production
system optimization and MNW determination. Then we propose data exchange and
results’ calculation between the mentioned optimization methods of IHKA for the
purpose of MNW determination. We have implemented the real-world simulation
model, which integrate analysis and design solution for production system, created
in the simulation environment Simio [17]. The simulation model shown in Fig. 8
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Fig. 8 The production system model in Simio

presents a real-world model of factory line E. The simulation model consists of all
the necessary real-world data from a real production line: The number of themachine
centre (machine centre parameters: Utilization, Overall Equipment Efficiency (OEE)
and machine piece’s capacity), distances, times and number of workers, which was
calculated by IHKA.

The experiment was carried out in a manufacturing enterprise based in Slove-
nia, in the European Union. The production system has two automated, Industry
4.0 supported production lines, which still needs workers to check the machines in
the automated production lines while they are running. In this case, the number of
workers must be determined. Therefore, at the pre-determined number of workers,
it is possible to optimise the number of machines for each worker to check and their
checking sequence of the machines. Once the optimal solution is obtained at the pre-
determined number of the workers, the maximum time required among all workers
(the time of the critical worker) to complete the check of the machines, denoted as
best_fitness, can be determined, and the comparison can be made with the working
time in one shift. If best_fitness ≤ shift_time, the pre-determined number of workers
is sufficient. Otherwise, it is not enough. In order to determine the optimal number of
workers, we can reduce or increase the number of workers, then the new best_fitness
i is obtained for the next comparison.

The real-world simulation, the model consists of ten machine centres that perform
the operations listed in Table 6. We can also see the individual operation duration,
Overall Equipment Effectiveness (OEE) and individual machine piece’s capacity.
Operations 0 and 11 are underlined due to outsourcing; their parameters are not



Use of a Simulation Environment and Metaheuristic Algorithm … 241

Table 6 Real-world production system parameters

Number of
operations

Operation Duration
(s)

OEE Capacity
(parts)

0 Soft machining outsourced / / /

1 Spline and thread rolling 15 85% 1630

2 Induction hardening 17 85% 1630

3 Marking 15 85% 1630

4 Induction tempering 17 85% 1630

5 Spline inspection 17 85% 1630

6 Hard turning 24 85% 1020

7 Combine hard machining 55 85% 890

8 Thread forming 28 85% 870

9 Thread inspection 17 85% 870

10 Washing 17 85% 1440

11 Painting outsourced / / /

available, but the contract with an external supplier guarantees that they are always
available.

Performing the processed operations is carried out in the above sequence, the
transport of the product betweenmachine centres is carried out using a conveyor belt.
Its speed is 0.1 m/s. Two workers, who are responsible for the smooth operation of
the machine centres, operate the production line and the work pieces’ quality control
at control points. An Automated Guided Vehicle (AGV) ensures the access to semi-
finished products and the removal of finished products automatically. TheAGVspeed
is 1.11 m/s, the speed of the AGVs is limited electronically. Semi-finished products
that arrive at the processing line are already pre-treated at the external supplier, also
the finished products require external corrosion protection. The entire production
system is fully automated (production and logistics), just the operation of Quality
Control (which is not performed on all products, just on randomly picked products)
is made by workers, Fig. 9. In the further step, we propose machine vision operation
at Quality Control for more robust, consistent and reliable Quality Control operation.

In the results received by IHKA, the E production line only needs one worker
to complete all the machines’ check in one shift. However, in the simulation of the
Simio software, the shift_time is a constant value for one eight hour working shift,
calculated in Eq. (13). Shift_time exclude three brakes, one 30 min lunch break and
two shorter 15 and 10 min rest brakes. The OEE of the machines is 85%, that is, the
effective working time of the machines in one shift is set as:

shi f t_time = 8 ∗ 60 − 30 − (15 + 10)

= 425 min (13)
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Fig. 9 The three dimensional view of production system model

machine_time = shi f t_time · OEE
= shi f t_time · 85%
= 361.25 min (14)

The effective working time of the machines is 361.25 min in one shift. In this
case, one worker is not enough to complete all the machine checking in one shift.
The real-world simulation model takes into account also the tools’ changing time,
maintenance time and randomly occurring emergency situations that happen during
the production lines’ operation. Results from the simulation model recommend the
presence of two workers to check the machines and perform Quality Control in
one shift. The simulation results confirm the IHKA calculated optimal times for
performing the control check of the production system in amount of 380.75 min in
the case of one worker and 190.36 min in the case of controlling two workers. In this
case, whenmachine_time is 361.25, one worker is not capable of quality performing
controlling tasks in the production system, that is why we need two workers as is it
calculated by the IHKA.

7 Conclusions

In this chapter, we have presented the Industry 4.0 5C CPS architectural model,
which was applied successfully to the five-level architecture implemented with sim-
ulation modelling and Evolutionary Computation. We demonstrated a methodology
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of 5C CPS architecture and practical approach for the transfer of theoretical knowl-
edge to the real-world production system. Then, we presented the HKA evolutionary
method for the purpose of determining single-criteria optimization and extended it
to the IHKA. The IHKA is proposed and applied successfully to solve the MNW
problem. Based on the original HKA, a mutation operation is introduced after the
solutions are generated by the Gaussian distribution, a function that handles the
boundary constraint is introduced, and, finally, a random number is introduced in
the updating formula of the standard deviation vector of the Gaussian generator, to
improve the performance of the algorithm. In the mutation operation, four operators
with random size insert operator, random size move backward operator, random size
swap operator, and 2-opt operators were introduced. A random number generated
by the Logistic chaotic map is introduced in the updating formula of the standard
deviation vector of the Gaussian generator. The discrete continuous mapping encod-
ing system, based on the relative position indexing, is introduced for the MNW. The
IHKA is tested on 4 selected TSP benchmark instances. From the 4 selected TSP
benchmark instances, it can see that the improved HKA improves the performance of
the original HKA. In solving the MNW problem; three algorithms were selected for
comparison, a quantitative analysis method based on statistical analysis, and a qual-
itative method based on convergence figures, were used to clarify the performance
of the IHKA. Although the improved HKA performs better than the original HKA in
bothMNWwith 1 and 2workers, especially in theMNWwith 1worker, but performs
poorly in the MNW with 2 workers, it still needs further improvement to increase
its performance. The optimization results of the IHKA algorithm were transferred
to the simulation environment, where the correctness was simulated of the obtained
NO solutions. The results confirm the correspondence between the proposed meth-
ods of Evolutionary Computing (IHKA) and simulation modelling (Simio). In this
case, we have combined advanced knowledge of simulation modelling and evolution
computing for the purpose of single-objective MNW optimization in Industry 4.0.

Further research work will be based on the implementation of collaborative work-
places in Industry 4.0 manufacturing systems. Here, the main question arises related
to the impact of productivity, efficiency and, at the ultimate stage, workers social
inclusion in collaborative workplaces. Their determination, eligibility and produc-
tivity could be determined with simulation modelling. In this case, simulation mod-
elling will be very important in the phase of inclusion of collaborative workplaces
in real-world production systems. However, in decision-making methods, we should
not forget the need for the integration of evolutionary computational algorithms for
the purpose of determining NO solutions regarding collaborative work places. Our
further research work will be based on the optimal number determination and the
setting of collaborative workplaces in the production systems using EC methods and
simulation environments. For the laboratory simulation testing, we will introduce
methods of virtual and augmented reality, which will combine EC algorithms and
simulation models for collaborative workplaces optimization.
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