46 research outputs found

    Multiple genetically engineered humanized microenvironments in a single mouse

    Get PDF
    Background Immunodeficient mouse models that accept human cell and tissue grafts can contribute greater knowledge to human stem cell research. In this technical report, we used biomaterial implants seeded with genetically engineered stromal cells to create several unique microenvironments in a single mouse. The scope of study was focused on human CD34 hematopoietic stem/progenitor cell (HSPC) engraftment and differentiation within the engineered microenvironment. Results A mouse model system was created using subdermal implant sites that overexpressed a specific human cytokines (Vascular Endothelial Growth Factor A (hVEGFa), Stromal Derived Factor 1 Alpha (hSDF1a), or Tumor Necrosis Factor Alpha (hTNFa)) by stromal cells in a three-dimensional biomaterial matrix. The systemic exposure of locally overexpressed cytokines was minimized by controlling the growth of stromal cells, which led to autonomous local, concentrated sites in a single mouse for study. This biomaterial implant approach allowed for the local analysis of each cytokine on hematopoietic stem cell recruitment, engraftment and differentiation in four different tissue microenvironments in the same host. The engineered factors were validated to have bioactive effects on human CD34+ hematopoietic progenitor cell differentiation. Conclusions This model system can serve as a new platform for the study of multiple human proteins and their local effects on hematopoietic cell biology for in vivo validation studies

    Core Circadian Clock Genes Regulate Leukemia Stem Cells in AML

    Get PDF
    Leukemia stem cells (LSCs) have the capacity to self-renew and propagate disease upon serial transplantation in animal models, and elimination of this cell population is required for curative therapies. Here, we describe a series of pooled, in vivo RNAi screens to identify essential transcription factors (TFs) in a murine model of acute myeloid leukemia (AML) with genetically and phenotypically defined LSCs. These screens reveal the heterodimeric, circadian rhythm TFs Clock and Bmal1 as genes required for the growth of AML cells in vitro and in vivo. Disruption of canonical circadian pathway components produces anti-leukemic effects, including impaired proliferation, enhanced myeloid differentiation, and depletion of LSCs. We find that both normal and malignant hematopoietic cells harbor an intact clock with robust circadian oscillations, and genetic knockout models reveal a leukemia-specific dependence on the pathway. Our findings establish a role for the core circadian clock genes in AML.National Institutes of Health (U.S.) (Grant P01 CA066996)National Institutes of Health (U.S.) (Grant R01 HL082945)National Cancer Institute (U.S.) (Grant P30-CA14051

    Endogenous tumor suppressor microRNA-193b: Therapeutic and prognostic value in acute myeloid leukemia

    Get PDF
    Purpose Dysregulated microRNAs are implicated in the pathogenesis and aggressiveness of acute myeloid leukemia (AML). We describe the effect of the hematopoietic stem-cell self-renewal regulating miR-193b on progression and prognosis of AML. Methods We profiled miR-193b-5p/3p expression in cytogenetically and clinically characterized de novo pediatric AML (n = 161) via quantitative real-time polymerase chain reaction and validated our findings in an independent cohort of 187 adult patients. We investigated the tumor suppressive function of miR-193b in human AML blasts, patient-derived xenografts, and miR-193b knockout mice in vitro and in vivo. Results miR-193b exerted important, endogenous, tumor-suppressive functions on the hematopoietic system. miR-193b-3p was downregulated in several cytogenetically defined subgroups of pediatric and adult AML, and low expression served as an independent indicator for poor prognosis in pediatric AML (risk ratio 6 standard error, 20.56 6 0.23; P = .016). miR-193b-3p expression improved the prognostic value of the European LeukemiaNet risk-group stratification or a 17-gene leukemic stemness score. In knockout mice, loss of miR-193b cooperated with Hoxa9/Meis1 during leukemogenesis, whereas restoring miR-193b expression impaired leukemic engraftment. Similarly, expression of miR-193b in AML blasts from patients diminished leukemic growth in vitro and in mouse xenografts. Mechanistically, miR-193b induced apoptosis and a G1/S-phase block in various human AML subgroups by targeting multiple factors of the KIT-RAS-RAF-MEK-ERK (MAPK) signaling cascade and the downstream cell cycle regulator CCND1. Conclusion The tumor-suppressive function is independent of patient age or genetics; therefore, restoring miR-193b would assure high antileukemic efficacy by blocking the entire MAPK signaling cascade while preventing the emergence of resistance mechanisms

    A skin cancer prevention facial-aging mobile app for secondary schools in Brazil : appearance-focused interventional study.

    Get PDF
    Background: The incidence of melanoma is increasing faster than any other major cancer both in Brazil and worldwide. Southeast Brazil has especially high incidences of melanoma, and early detection is low. Exposure to ultraviolet (UV) radiation is a primary risk factor for developing melanoma. Increasing attractiveness is a major motivation among adolescents for tanning. A medical student-delivered intervention that takes advantage of the broad availability of mobile phones and adolescents? interest in their appearance indicated effectiveness in a recent study from Germany. However, the effect in a high-UV index country with a high melanoma prevalence and the capability of medical students to implement such an intervention remain unknown. Objective: In this pilot study, our objective was to investigate the preliminary success and implementability of a photoaging intervention to prevent skin cancer in Brazilian adolescents. Methods: We implemented a free photoaging mobile phone app (Sunface) in 15 secondary school classes in southeast Brazil. Medical students ?mirrored? the pupils? altered 3-dimensional (3D) selfies reacting to touch on tablets via a projector in front of their whole grade accompanied by a brief discussion of means of UV protection. An anonymous questionnaire capturing sociodemographic data and risk factors for melanoma measured the perceptions of the intervention on 5-point Likert scales among 356 pupils of both sexes (13-19 years old; median age 16 years) in grades 8 to 12 of 2 secondary schools in Brazil. Results: We measured more than 90% agreement in both items that measured motivation to reduce UV exposure and only 5.6% disagreement: 322 (90.5%) agreed or strongly agreed that their 3D selfie motivated them to avoid using a tanning bed, and 321 (90.2%) that it motivated them to improve their sun protection; 20 pupils (5.6%) disagreed with both items. The perceived effect on motivation was higher in female pupils in both tanning bed avoidance (n=198, 92.6% agreement in females vs n=123, 87.2% agreement in males) and increased use of sun protection (n=197, 92.1% agreement in females vs n=123, 87.2% agreement in males) and independent of age or skin type. All medical students involved filled in a process evaluation revealing that they all perceived the intervention as effective and unproblematic, and that all pupils tried the app in their presence. Conclusions: The photoaging intervention was effective in changing behavioral predictors for UV protection in Brazilian adolescents. The predictors measured indicated an even higher prospective effectiveness in southeast Brazil than in Germany (>90% agreement in Brazil vs >60% agreement in Germany to both items that measured motivation to reduce UV exposure) in accordance with the theory of planned behavior. Medical students are capable of complete implementation. A randomized controlled trial measuring prospective effects in Brazil is planned as a result of this study

    Toward Whole-Transcriptome Editing with CRISPR-Cas9.

    Get PDF
    Targeted regulation of gene expression holds huge promise for biomedical research. In a series of recent publications (Gilbert et al., 2014; Konermann et al., 2015; Zalatan et al., 2015), sophisticated, multiplex-compatible transcriptional activator systems based on the CRISPR-Cas9 technology and genome-scale libraries advance the field toward whole-transcriptome control

    Additional file 1: Figure S1. of Multiple genetically engineered humanized microenvironments in a single mouse

    No full text
    Selection and conformation of lentivial transfected mouse stromal cells. (A) Flow cytometric analysis of GFP mBMSC, (B) Culture-expanded genetically engineered mBMSCs. (Scale bar, 200μm). Figure S2. Characterized secretion of human cytokines from genetically engineered stromal cells in 1 and 3 weeks in vitro culture. Figure S3. hSDF1a ELISA in mouse blood serum. Control mice without scaffold implantation showed a background level of SDF1a signal due to cross-reactivity. This level was used as a baseline and was also observed in growth arrested, which was concluded, as undetectable. The other groups showed measurable levels above background and were concluded to be true hSDF-1a detection. Figure S4. SEM images of growth-competent genetically engineered stromal cell-seeded scaffolds. (A) Cross-sectional images of human soluble factor secreting engineered stromal cell-seeded scaffolds after 6 weeks subcutaneous implantation. Except hTNFa, entire pores were completely filled with tissue cells with no hematopoietic components. (B) Closed-up image of growing engineered stromal cell-seeded scaffolds. Figure S5. Examples of semi-quantitative image analysis using ImageJ. (A) Collagen fiber area estimation from a Masson’s Trichrome staining image, (B) Vasculature area estimation from an immunohistostaining mCD31 and DAPI image. Figure S6. Long-term maintenance of inflammation-mimicking tissue microenvironment indirectly indicates survival and function of growth-arrested hTNFa secreting engineered stromal cells in the implanted scaffolds. (DOCX 2962 kb

    Combining LSD1 and JAK-STAT inhibition targets Down syndrome-associated myeloid leukemia at its core

    No full text
    Individuals with Down syndrome (DS) are predisposed to developing acute megakaryoblastic leukemia (ML-DS) within their first years of life [1]. Although, ML-DS is associated with a favorable prognosis, children with DS often experience severe toxicities from chemotherapy [2]. This highlights the unmet need for targeted therapies with improved risk profiles in this entity. Consequently, the aim of this study was to investigate a novel therapeutic approach specifically tailored to intervene with hallmarks of ML-DS leukemogenesis. The evolution of ML-DS occurs in a step-wise process originating from pre-malignant transient abnormal myelopoiesis (TAM) [3]. The molecular mechanisms underlying the progression from TAM to ML-DS are not fully understood. However, it was previously shown that epigenetic changes play a pivotal role in ML-DS leukemogenesis. The lysine demethylase LSD1 was identified as a crucial player in this process, as LSD1-driven gene signatures become activated in ML-DS [4]. Accordingly, RNA-sequencing analysis of pediatric acute myeloid leukemia (AML) subtypes revealed that LSD1 was highly expressed in acute megakaryoblastic leukemia (AMKL), and especially in TAM and ML-DS patients (Supplementary Fig. 1). LSD1 is essential for hematopoiesis, particularly during granulocytic and erythroid differentiation [5], and was shown to contribute to differentiation blockade in different AML subtypes [6,7,8]. Consequently, various irreversible LSD1 inhibitors have been developed, with some currently undergoing clinical trials for AML [9]. Therefore, we sought to investigate the rational use of LSD1 inhibitors in pediatric AMKL. The non-DS-AMKL cell line M-07e and the ML-DS cell line CMK were highly sensitive to irreversible LSD1 inhibition (IC50M-07e = 9.1 nM; IC50CMK = 38.8 nM; Supplementary Fig. 2A). Testing serial dilutions of the irreversible LSD1 inhibitor in non-DS-AMKL and ML-DS patient samples expanded via xenotransplantation (see Supplementary Table 1 for patient characteristics), both entities were equally sensitive to LSD1 inhibition (non-DS-AMKL: IC50#1 = 15.0 nM, IC50#2 = 2.0 nM; ML-DS: IC50#1 = 31.2 nM, IC50#2 = 17.1 nM, IC50#3 = 3.8 nM). All dose-response curves plateaued at a certain LSD1 inhibitor concentration (Supplementary Fig. 2B). The non-linear relationship between cytotoxicity and dosage points toward proliferation arrest and differentiation in response to LSD1 inhibition. In line with this, we observed myeloid differentiation upon visual inspection (Supplementary Fig. 3A) and upregulation of the myeloid markers CD86 and CD11b after 3 days of LSD1 inhibitor treatment (Supplementary Fig. 3B). These results revealed a potent proliferation block and induction of differentiation in non-DS-AMKL and ML-DS samples, however, the therapeutic efficacy of LSD1 inhibition may be limited by its non-linear dose-response relationship. Consequently, we aimed to design a rational drug combination to increase its anti-leukemic effects. Another hallmark of ML-DS development is the acquisition of activating mutations in Janus kinases (JAK) and cytokine receptors [4], promising potent anti-leukemic effects of the combination of LSD1 inhibition and the JAK1/JAK2 inhibitor ruxolitinib, as it was previously proposed for JAK2V617F mutated myeloproliferative neoplasms, secondary AML and a CSF3Rmut/CEBPαmut AML model [10,11,12]. Accordingly, pre-treatment with 350 nM LSD1 inhibitor for 3 days followed by exposure to serial dilutions of ruxolitinib led to synergistic growth inhibition in non-DS-AMKL and ML-DS cell lines (Supplementary Fig. 4), as well as in all ML-DS patient samples (Fig. 1A). The combination of LSD1 inhibition and ruxolitinib proved to be very effective in non-DS-AMKL blasts, however, with only additive cytotoxic effects in one of the two patient samples (Fig. 1A). Drug synergy in the ML-DS samples was confirmed when calculating the Bliss synergy scores (Fig. 1B). Interestingly, samples ML-DS #1 (JAK1mut) and #2 (wild-type for JAK1, JAK2, and JAK3, Supplementary Fig. 5) showed particularly high synergy scores (ML-DS #1 synergy score = 10.4; ML-DS #2 synergy score = 15.6; Fig. 1B). Contrary, the JAK3mut patient sample ML-DS #3 (Supplementary Fig. 5) only displayed mild drug synergy between LSD1 inhibition and ruxolitinib (synergy score = 2.0; Fig. 1B). Consequently, as ruxolitinib is a JAK1/JAK2 inhibitor, synergistic anti-leukemic effects seem to depend on JAK mutational status, which must be considered in future pre-clinical and clinical testing of this drug combination for ML-DS patients
    corecore