6,134 research outputs found
The processing of IMU data in ENTREE implementation and preliminary results
It is demonstrated that the shuttle entry trajectory can be accurately represented in ENTREE with IMU data available postflight. The IMU data consist of platform to body quaternions, and accumulated sensed velocities in mean of fifty (M50) coordinates approximately every second. The preprocessing software required to incorporate the IMU data in ENTREE is described as well as the relatively minor code changes to the ENTREE program itself required to process the IMU data. Code changes to the ENTREE program and input tape data format and content changes are described
Formulation of additional observables for ENTREE
The S-band X and Y angles, SAMS, and TACAN range and bearing were incorporated into the ENTREE software for use by experimenters at LaRC for entry trajectory reconstruction purposes. Background discussions present the need for this added capability. Formulations for the various observables are presented. Both north-south and east-west antenna mounts were provided for in the S-band angle computations. Sub-vehicle terrain height variations are included in the SAMS model. Local magnetic variations were incorporated for the TACAN bearing computations. Observable formulations are discussed in detail along with the partial computations
Reconstruction of the 1st Space Shuttle (STS-1) entry trajectory
A discussion of the generation of the best estimate trajectory (BET) of the first Space Shuttle Orbiter entry flight is presented. The BET defines a time history of the state, attitude, and atmospheric relative parameters throughout the Shuttle entry from an altitude of approximately 183 km to rollout. The inertial parameters were estimated utilizing a weighted least squares batch filter algorithm. Spacecraft angular rate and acceleration data derived from the Inertial Measurement Unit were utilized to predict the state and attitude which was constrained in a weighted least squares process to fit external tracking data consisting of ground based S-band and C-band data. Refined spacecraft altitude and velocity during and post rollout were obtained by processing artificial altimeter and Doppler data. The BET generation process is discussed. Software and data interface discussions are included. The variables and coordinate systems utilized are defined. STS-1 mission peculiar inputs are summarized. A listing of the contents of the actual BET is provided
STS-8 bet results
The final Best Estimate Trajectory (BET) products, i.e., the reconstructed trajectory, the Extended BET, AEROBET and MMLE input files, generated for the eighth NASA Space Shuttle flight are documented. The reconstructed trajectory (inertial BET) for this Challenger flight, the first night landing is discussed. State (position, velocity, and attitude) plus three accelerometer scale factors were determined from fitting the Guam S-band data, seven C-band passes, and pseudo Doppler and altimeter during rollout on Runway 22. The anchor epoch utilized for the batch weighted-least-squares determination was Sept. 5, 1983 7h1m50s.0 (25310 GMT seconds). The spacecraft altitude at epoch is approx. 617 kft. IMU2 data were selected for the reconstruction
Summary of shuttle data processing and aerodynamic performance comparisons for the first 11 flights
NASA Space Shuttle aerodynamic and aerothermodynamic research is but one part of the most comprehensive end-to-end flight test program ever undertaken considering: the extensive pre-flight experimental data base development; the multitude of spacecraft and remote measurements taken during entry flight; the complexity of the Orbiter aerodynamic configuration; the variety of flight conditions available across the entire speed regime; and the efforts devoted to flight data reduction throughout the aerospace community. Shuttle entry flights provide a wealth of research quality data, in essence a veritable flying wind tunnel, for use by researchers to verify and improve the operational capability of the Orbiter and provide data for evaluations of experimental facilities as well as computational methods. This final report merely summarizes the major activities conducted by the AMA, Inc. under NASA Contract NAS1-16087 as part of that interesting research. Investigators desiring more detailed information can refer to the glossary of AMA publications attached herein as Appendix A. Section I provides background discussion of software and methodology development to enable Best Estimate Trajectory (BET) generation. Actual products generated are summarized in Section II as tables which completely describe the post-flight products available from the first three-year Shuttle flight history. Summary results are presented in Section III, with longitudinal performance comparisons included as Appendices for each of the flights
STS-13 (41-C) BET products
Results from the STS-13 (41-C) Shuttle entry flight are presented. The entry trajectory was reconstructed from an altitude of 700 kft through rollout on Runway 17 at EAFB. The anchor epoch utilized was April 13, 1984 13(h)1(m)30.(s)0 (46890(s).0) GMT. The final reconstructed inertial trajectory for this flight is BT13M23 under user catalog 169750N. Trajectory reconstruction and Extended BET development are discussed in Section 1 and 2, respectively. The NOAA totem-pole atmosphere extracted from the JSC/TRW BET was adopted in the development of the LaRC Extended BET, namely ST13BET/UN=274885C. The Aerodynamic BET was generated on physical nine track reel NC0728 with a duplicate copy on NC0740 for back-up. Plots of the more relevant parameters from the AEROBET are presented in Section 3. Section 4 discusses the MMLE input files created for STS-13. Appendices are attached which present spacecraft and physical constants utilized (Appendix A), residuals by station and data type (Appendix B), a two second spaced listing of trajectory and air data parameters (Appendix C), and input and output source products for archival (Appendix D)
STS-9 BET products
The final products generated for the STS-9, which landed on December 8, 1983 are reported. The trajectory reconstruction utilized an anchor epoch of GMT corresponding to an initial altitude of h 356 kft, selected in view of the limited tracking coverage available. The final state utilized IMU2 measurements and was based on processing radar tracking from six C-bands and a single S-band station, plus six photo-theodolite cameras in the vicinity of Runway 17 at Edwards Air Force Base. The final atmosphere (FLAIR9/UN=581199C) was based on a composite of the remote measured data and the 1978 Air Force Reference Atmosphere model. The Extended BET is available as STS9BET/UN=274885C. The AEROBET and MMLE input files created are discussed. Plots of the more relevant parameters from the AEROBET (reel number NL0624) are included. Input parameters, final residual plots, a trajectory listing, and data archival information are defined
Challenger STS-17 (41-G) post-flight best estimate trajectory products: Development and summary results
Results from the STS-17 (41-G) post-flight products are presented. Operational Instrumentation recorder gaps, coupled with the limited tracking coverage available for this high inclination entry profile, necessitated selection of an anchor epoch for reconstruction corresponding to an unusually low altitude of h approx. 297 kft. The final inertial trajectory obtained, BT17N26/UN=169750N, is discussed in Section I, i.e., relative to the problems encountered with the OI and ACIP recorded data on this Challenger flight. Atmospheric selection, again in view of the ground track displacement from the remote meteorological sites, constituted a major problem area as discussed in Section II. The LAIRS file provided by Langley was adopted, with NOAA data utilized over the lowermost approx. 7 kft. As discussed in Section II, the Extended BET, ST17BET/UN=274885C, suggests a limited upper altitude (H approx. 230 kft) for which meaningful flight extraction can be expected. This is further demonstrated, though not considered a limitation, in Section III wherein summary results from the AEROBET (NJ0333 with NJ0346 as duplicate) are presented. GTFILEs were generated only for the selected IMU (IMU2) and the Rate Gyro Assembly/Accelerometer Assembly data due to the loss of ACIP data. Appendices attached present inputs for the generation of the post-flight products (Appendix A), final residual plots (Appendix B), a two second spaced listing of the relevant parameters from the Extended BET (Appendix C), and an archival section (Appendix D) devoting input (source) and output files and/or physical reels
- …