23 research outputs found

    Lateralization of mesial temporal lobe epilepsy with chronic ambulatory electrocorticography

    Get PDF
    OBJECTIVE: Patients with suspected mesial temporal lobe (MTL) epilepsy typically undergo inpatient video-electroencephalography (EEG) monitoring with scalp and/or intracranial electrodes for 1 to 2 weeks to localize and lateralize the seizure focus or foci. Chronic ambulatory electrocorticography (ECoG) in patients with MTL epilepsy may provide additional information about seizure lateralization. This analysis describes data obtained from chronic ambulatory ECoG in patients with suspected bilateral MTL epilepsy in order to assess the time required to determine the seizure lateralization and whether this information could influence treatment decisions. METHODS: Ambulatory ECoG was reviewed in patients with suspected bilateral MTL epilepsy who were among a larger cohort with intractable epilepsy participating in a randomized controlled trial of responsive neurostimulation. Subjects were implanted with bilateral MTL leads and a cranially implanted neurostimulator programmed to detect abnormal interictal and ictal ECoG activity. ECoG data stored by the neurostimulator were reviewed to determine the lateralization of electrographic seizures and the interval of time until independent bilateral MTL electrographic seizures were recorded. RESULTS: Eighty-two subjects were implanted with bilateral MTL leads and followed for 4.7 years on average (median 4.9 years). Independent bilateral MTL electrographic seizures were recorded in 84%. The average time to record bilateral electrographic seizures in the ambulatory setting was 41.6 days (median 13 days, range 0-376 days). Sixteen percent had only unilateral electrographic seizures after an average of 4.6 years of recording. SIGNIFICANCE: About one third of the subjects implanted with bilateral MTL electrodes required >1 month of chronic ambulatory ECoG before the first contralateral MTL electrographic seizure was recorded. Some patients with suspected bilateral MTL seizures had only unilateral electrographic seizures. Chronic ambulatory ECoG in patients with suspected bilateral MTL seizures provides data in a naturalistic setting, may complement data from inpatient video-EEG monitoring, and can contribute to treatment decisions

    Epilepsy surgery in the underserved Hispanic population improves depression, anxiety, and quality of life

    No full text
    Objective: The objective of this study was to investigate the effect of epilepsy surgery on depression, anxiety, and quality of life (QOL) in a Hispanic, primarily immigrant, Spanish-speaking population with intractable epilepsy (IE). Methods: Patients with IE from a comprehensive epilepsy treatment center in an urban, public healthcare setting who underwent resective brain surgery between 2008 and 2014 (N = 47) and completed presurgical and postsurgical neuropsychological evaluation were retrospectively identified. Presurgical and 1-year postsurgical Beck Depression Inventory-II (BDI-II), Beck Anxiety Inventory (BAI), and QOLIE-31 ratings were analyzed as postsurgical outcome measures. One-tailed paired sample t-tests were used to evaluate whether scores improved postoperatively. Established severity level classifications of depression and anxiety (i.e., minimal, mild, moderate, or severe) were used to analyze changes in occurrence of depression and anxiety. Results: Medium to large improvements on the BDI-II and most QOLIE-31 subscales, with a smaller effect on the BAI and remaining QOLIE-31 subscales, were noted 1-year postsurgery. Levels of depression and anxiety were significantly reduced 1-year postsurgery. Depression, anxiety, and QOL improvements were robust and unaffected by gender, levels of education, or hemisphere of surgery. Conclusions: This study supports the positive benefits of epilepsy surgery on depression, anxiety, and QOL in Hispanic, primarily undocumented immigrant, Spanish-speaking people with epilepsy (PWE) in the US. These results are useful for educating this particular population about the possible benefits of surgery for IE and can enhance presurgical counseling

    Epilepsy surgery in the underserved Hispanic population improves depression, anxiety, and quality of life

    No full text
    Objective: The objective of this study was to investigate the effect of epilepsy surgery on depression, anxiety, and quality of life (QOL) in a Hispanic, primarily immigrant, Spanish-speaking population with intractable epilepsy (IE). Methods: Patients with IE from a comprehensive epilepsy treatment center in an urban, public healthcare setting who underwent resective brain surgery between 2008 and 2014 (N = 47) and completed presurgical and postsurgical neuropsychological evaluation were retrospectively identified. Presurgical and 1-year postsurgical Beck Depression Inventory-II (BDI-II), Beck Anxiety Inventory (BAI), and QOLIE-31 ratings were analyzed as postsurgical outcome measures. One-tailed paired sample t-tests were used to evaluate whether scores improved postoperatively. Established severity level classifications of depression and anxiety (i.e., minimal, mild, moderate, or severe) were used to analyze changes in occurrence of depression and anxiety. Results: Medium to large improvements on the BDI-II and most QOLIE-31 subscales, with a smaller effect on the BAI and remaining QOLIE-31 subscales, were noted 1-year postsurgery. Levels of depression and anxiety were significantly reduced 1-year postsurgery. Depression, anxiety, and QOL improvements were robust and unaffected by gender, levels of education, or hemisphere of surgery. Conclusions: This study supports the positive benefits of epilepsy surgery on depression, anxiety, and QOL in Hispanic, primarily undocumented immigrant, Spanish-speaking people with epilepsy (PWE) in the US. These results are useful for educating this particular population about the possible benefits of surgery for IE and can enhance presurgical counseling

    Dual responsive neurostimulation implants for epilepsy

    No full text
    Closed-loop brain-responsive neurostimulation via the RNS System is a treatment option for adults with medically refractory focal epilepsy. Using a novel technique, 2 RNS Systems (2 neurostimulators and 4 leads) were successfully implanted in a single patient with bilateral parietal epileptogenic zones. In patients with multiple epileptogenic zones, this technique allows for additional treatment options. Implantation can be done successfully, without telemetry interference, using proper surgical planning and neurostimulator positioning. Trajectories for the depth leads were planned using neuronavigation with CT and MR imaging. Stereotactic frames were used for coordinate targeting. Each neurostimulator was positioned with maximal spacing to avoid telemetry interference while minimizing patient discomfort. A separate J-shaped incision was used for each neurostimulator to allow for compartmentalization in case of infection. In order to minimize surgical time and risk of infection, the neurostimulators were implanted in 2 separate surgeries, approximately 3 weeks apart. The neurostimulators and leads were successfully implanted without adverse surgical outcomes. The patient recovered uneventfully, and the early therapy settings over several months resulted in preliminary decreases in aura and seizure frequency. Stimulation by one of the neurostimulators did not result in stimulation artifacts detected by the contralateral neurostimulator

    Real‐world experience with direct brain‐responsive neurostimulation for focal onset seizures

    No full text
    OBJECTIVE: The RNS System is a direct brain-responsive neurostimulation system that is US Food and Drug Administration-approved for adults with medically intractable focal onset seizures based on safety and effectiveness data from controlled clinical trials. The purpose of this study was to retrospectively evaluate the real-world safety and effectiveness of the RNS System. METHODS: Eight comprehensive epilepsy centers conducted a chart review of patients treated with the RNS System for at least 1 year, in accordance with the indication for use. Data included device-related serious adverse events and the median percent change in disabling seizure frequency from baseline at years 1, 2, and 3 of treatment and at the most recent follow-up. RESULTS: One hundred fifty patients met the criteria for analysis. The median reduction in seizures was 67% (interquartile range [IQR] = 33%-93%, n = 149) at 1 year, 75% (IQR = 50%-94%, n = 93) at 2 years, 82% (IQR = 50%-96%, n = 38) at ≥3 years, and 74% (IQR = 50%-96%, n = 150) at last follow-up (mean = 2.3 years). Thirty-five percent of patients had a ≥90% seizure frequency reduction, and 18% of patients reported being clinically seizure-free at last follow-up. Seizure frequency reductions were similar regardless of patient age, age at epilepsy onset, duration of epilepsy, seizure onset in mesial temporal or neocortical foci, magnetic resonance imaging findings, prior intracranial monitoring, prior epilepsy surgery, or prior vagus nerve stimulation treatment. The infection rate per procedure was 2.9% (6/150 patients); five of the six patients had an implant site infection, and one had osteomyelitis. Lead revisions were required in 2.7% (4/150), and 2.0% (3/150) of patients had a subdural hemorrhage, none of which had long-lasting neurological consequences. SIGNIFICANCE: In this real-world experience, safety was similar and clinical seizure outcomes exceeded those of the prospective clinical trials, corroborating effectiveness of this therapy and suggesting that clinical experience has informed more effective programming
    corecore