4,747 research outputs found

    Measurement of atomic diffraction phases induced by material gratings

    Full text link
    Atom-surface interactions can significantly modify the intensity and phase of atom de Broglie waves diffracted by a silicon nitride grating. This affects the operation of a material grating as a coherent beam splitter. The phase shift induced by diffraction is measured by comparing the relative phases of serveral interfering paths in a Mach-Zehnder Na atom interferometer formed by three material gratings. The values of the diffraction phases are consistent with a simple model which includes a van der Waals atom-surface interaction between the Na atoms and the silicon nitride grating bars.Comment: 4 pages, 5 figures, submitted to PR

    Vector coherent state theory of the generic representations of so(5) in an so(3) basis

    Full text link
    For applications of group theory in quantum mechanics, one generally needs explicit matrix representations of the spectrum generating algebras that arise in bases that reduce the symmetry group of some Hamiltonian of interest. Here we use vector coherent state techniques to develop an algorithm for constructing the matrices for arbitrary finite-dimensional irreps of the SO(5) Lie algebra in an SO(3) basis. The SO(3) subgroup of SO(5) is defined by regarding SO(5) as linear transformations of the five-dimensional space of an SO(3) irrep of angular momentum two. A need for such irreps arises in the nuclear collective model of quadrupole vibrations and rotations. The algorithm has been implemented in MAPLE, and some tables of results are presented.Comment: 20 pages, uses multirow.sty, submitted to J. Math. Phy

    Diffraction limit of the sub-Planck structures

    Full text link
    The orthogonality of cat and displaced cat states, underlying Heisenberg limited measurement in quantum metrology, is studied in the limit of large number of states. The asymptotic expression for the corresponding state overlap function, controlled by the sub-Planck structures arising from phase space interference, is obtained exactly. The validity of large phase space support, in which context the asymptotic limit is achieved, is discussed in detail. For large number of coherent states, uniformly located on a circle, it identically matches with the diffraction pattern for a circular ring with uniform angular source strength. This is in accordance with the van Cittert-Zernike theorem, where the overlap function, similar to the mutual coherence function matches with a diffraction pattern.Comment: 5 pages, 3 figure

    Mass and Spin of Poincare Gauge Theory

    Get PDF
    We discuss two expressions for the conserved quantities (energy momentum and angular momentum) of the Poincar\'e Gauge Theory. We show, that the variations of the Hamiltonians, of which the expressions are the respective boundary terms, are well defined, if we choose an appropriate phase space for asymptotic flat gravitating systems. Furthermore, we compare the expressions with others, known from the literature.Comment: 16 pages, plain-tex; to be published in Gen. Rel. Gra

    Neutron-Proton Correlations in an Exactly Solvable Model

    Get PDF
    We examine isovector and isoscalar neutron-proton correlations in an exactly solvable model based on the algebra SO(8). We look particularly closely at Gamow-Teller strength and double beta decay, both to isolate the effects of the two kinds of pairing and to test two approximation schemes: the renormalized neutron-proton QRPA (RQRPA) and generalized BCS theory. When isoscalar pairing correlations become strong enough a phase transition occurs and the dependence of the Gamow-Teller beta+ strength on isospin changes in a dramatic and unfamiliar way, actually increasing as neutrons are added to an N=Z core. Renormalization eliminates the well-known instabilities that plague the QRPA as the phase transition is approached, but only by unnaturally suppressing the isoscalar correlations. Generalized BCS theory, on the other hand, reproduces the Gamow-Teller strength more accurately in the isoscalar phase than in the usual isovector phase, even though its predictions for energies are equally good everywhere. It also mixes T=0 and T=1 pairing, but only on the isoscalar side of the phase transition.Comment: 13 pages + 11 postscript figures, in RevTe

    A Stability Diagram for Dense Suspensions of Model Colloidal Al2O3-Particles in Shear Flow

    Get PDF
    In Al2O3 suspensions, depending on the experimental conditions very different microstructures can be found, comprising fluid like suspensions, a repulsive structure, and a clustered microstructure. For technical processing in ceramics, the knowledge of the microstructure is of importance, since it essentially determines the stability of a workpiece to be produced. To enlighten this topic, we investigate these suspensions under shear by means of simulations. We observe cluster formation on two different length scales: the distance of nearest neighbors and on the length scale of the system size. We find that the clustering behavior does not depend on the length scale of observation. If inter-particle interactions are not attractive the particles form layers in the shear flow. The results are summarized in a stability diagram.Comment: 15 pages, 10 figures, revised versio
    corecore