117 research outputs found

    Characterization of high finesse mirrors: loss, phase shifts and mode structure in an optical cavity

    Get PDF
    An extensive characterization of high finesse optical cavities used in cavity QED experiments is described. Different techniques in the measurement of the loss and phase shifts associated with the mirror coatings are discussed and their agreement shown. Issues of cavity field mode structure supported by the dielectric coatings are related to our effort to achieve the strongest possible coupling between an atom and the cavity.Comment: 8 pages, 4 figure

    To exclose nests or not: structured decision making for the conservation of a threatened species

    Get PDF
    Decisions regarding endangered species recovery often face sparse data and multiple sources of uncertainty about the effects of management. Structured decision making (SDM) provides a framework for assembling knowledge and expert opinion and evaluating the tradeoffs between different objectives while formally incorporating uncertainty. The Atlantic Coast piping plover provides an illustrative case for the utility of SDM in endangered species management because its population growth is simple to model, most populations are monitored, decision alternatives are well defined, and many managers are open to recovery recommendations. We built a model to evaluate the decision to use nest exclosures to protect piping plover eggs from predators, where the objective was to maximize λ and the tradeoff was between nest survival and adult survival. The latter can be reduced by exclosures. We used a novel mixed multinomial logistic exposure model to predict daily nest fates and incorporated the results into a stochastic projection matrix that included renesting after nest failure, and adult mortality associated with abandonment. In our test data set (n = 329 nests from 28 sites over four years), the mean nest survival over 34 days was markedly higher for exclosed nests (0.76 ± 0.03 SE) than for unexclosed nests (0.37 ± 0.07). Abandonment rates were also higher for exclosed nests (0.092 ± 0.017) than for unexclosed nests (0.045 ± 0.017), but the difference was not statistically signifi- cant and the loss rate to “other sources” (mostly predators) was much lower for exclosed nests (0.15 ± 0.03) than for unexclosed nests (0.58 ± 0.07). Population growth rate (λ) was clearly improved by exclosure use at the sites with high background nest loss rates, but λ was still \u3c1 with exclosure use. Where the background nest loss rates were low, the decision to use exclosures was ambiguous, and λ could benefit from reducing uncertainty in vital rates. Our process demonstrated that geographic and temporal variation in nest mortality determines whether exclosures will be useful in attaining positive population growth rates and that other management options must be considered where the background nest mortality rates are high

    Altered transmission of HOX and apoptotic SNPs identify a potential common pathway for clubfoot.

    Get PDF
    Clubfoot is a common birth defect that affects 135,000 newborns each year worldwide. It is characterized by equinus deformity of one or both feet and hypoplastic calf muscles. Despite numerous study approaches, the cause(s) remains poorly understood although a multifactorial etiology is generally accepted. We considered the HOXA and HOXD gene clusters and insulin-like growth factor binding protein 3 (IGFBP3) as candidate genes because of their important roles in limb and muscle morphogenesis. Twenty SNPs from the HOXA and HOXD gene clusters and 12 SNPs in IGFBP3 were genotyped in a sample composed of non-Hispanic white and Hispanic multiplex and simplex families (discovery samples) and a second sample of non-Hispanic white simplex trios (validation sample). Four SNPs (rs6668, rs2428431, rs3801776, and rs3779456) in the HOXA cluster demonstrated altered transmission in the discovery sample, but only rs3801776, located in the HOXA basal promoter region, showed altered transmission in both the discovery and validation samples (P = 0.004 and 0.028). Interestingly, HOXA9 is expressed in muscle during development. An SNP in IGFBP3, rs13223993, also showed altered transmission (P = 0.003) in the discovery sample. Gene-gene interactions were identified between variants in HOXA, HOXD, and IGFBP3 and with previously associated SNPs in mitochondrial-mediated apoptotic genes. The most significant interactions were found between CASP3 SNPS and variants in HOXA, HOXD, and IGFBP3. These results suggest a biologic model for clubfoot in which perturbation of HOX and apoptotic genes together affect muscle and limb development, which may cause the downstream failure of limb rotation into a plantar grade position

    Template-Directed Assembly of a de Novo

    Full text link

    Suitability and safety of L-5-methyltetrahydrofolate as a folate source in infant formula: A randomized-controlled trial

    Get PDF
    L-5-methyltetrahydrofolate is the predominant folate form in human milk but is currently not approved as a folate source for infant and follow-on formula. We aimed to assess the suitability of L-5-methyltetrahydrofolate as a folate source for infants. Growth and tolerance in healthy term infants fed formulae containing equimolar doses of L-5-methyltetrahydrofolate (10.4 mu g/100 ml, n = 120, intervention group) or folic acid (10.0 mu g/100 ml, n = 120, control group) was assessed in a randomized, double-blind, parallel, controlled trial. A reference group of breastfed infants was followed. Both formulae were well accepted without differences in tolerance or occurrence of adverse events. The most common adverse events were common cold, poor weight gain or growth, rash, eczema, or dry skin and respiratory tract infection. Weight gain (the primary outcome) was equivalent in the two groups (95% CI -2.11;1.68 g/d). In line with this, there was only a small difference in absolute body weight adjusted for birth weight and sex at visit 4 (95% CI -235;135 g). Equivalence was also shown for gain in head circumference but not for recumbent length gain and increase in calorie intake. Given the nature of the test, this does not indicate an actual difference, and adjusted means at visit 4 were not significantly different for any of these parameters. Infants receiving formula containing L-5-methyltetrahydrofolate had lower mean plasma levels of unmetabolized folic acid (intervention: 0.73 nmol/L, control: 1.15 nmol/L, p<0.0001) and higher levels of red cell folate (intervention: 907.0 +/- 192.8 nmol/L, control: 839.4 +/- 142.4 nmol/L, p = 0.0095). We conclude that L-5-methyltetrahydrofolate is suitable for use in infant and follow-on formula, and there are no indications of untoward effects

    Genetic association and characterization of FSTL5 in isolated clubfoot

    Get PDF
    ACKNOWLEDGEMENTS: The Atherosclerosis Risk in Communities Study is carried out as a collaborative study supported by National Heart, Lung, and Blood Institute contracts (HHSN268201100005C, HHSN268201100006C, HHSN268201100007C, HHSN268201100008C, HHSN268201100009C, HHSN268201100010C, HHSN268201100011C, and HHSN268201100012C). The authors thank the staff and participants of the ARIC study for their important contributions. Funding for GENEVA was provided by National Human Genome Research Institute grant U01HG004402 (E.Boerwinkle). We thank H. Hobbs and J. Cohen for contributing control samples for replication genotyping, Nadav Ahituv for sharing RNA-seq data for both bat and mouse embryonic limb buds, Tommy Hyatt for designing the custom genotyping assay, and members of the UT Southwestern Transgenic Core facility, including John Ritter, Mylinh Nguyen, and Robert Hammer. Publicly available mouse embryonic expression analysis results were provided online at https://oncoscape.v3.sttrcancer.org/atlas.gs.washington.edu.mouse.rna/landing (24). The authors acknowledge the contributions and support of the Center for Excellence in Clubfoot Research at Scottish Rite for Children, including Shawne Faulks and Kristhen Atala. Fstl5 mutant rats were produced by the NIH Mutant Rat Resource at UT Southwestern Medical Center (R24RR03232601, R24OD011108, R01HD036022, and (5R01HD053889). This study was supported by funding from the Scottish Rite for Children Research Fund (J.J.R.), Shriners Hospital for Children (J.T.H), and the National Institutes of Health award R01HD043342 (J.T.H.).Peer reviewedPostprin

    Hostile Takeover by Plasmodium: Reorganization of Parasite and Host Cell Membranes during Liver Stage Egress

    Get PDF
    The protozoan parasite Plasmodium is transmitted by female Anopheles mosquitoes and undergoes obligatory development within a parasitophorous vacuole in hepatocytes before it is released into the bloodstream. The transition to the blood stage was previously shown to involve the packaging of exoerythrocytic merozoites into membrane-surrounded vesicles, called merosomes, which are delivered directly into liver sinusoids. However, it was unclear whether the membrane of these merosomes was derived from the parasite membrane, the parasitophorous vacuole membrane or the host cell membrane. This knowledge is required to determine how phagocytes will be directed against merosomes. Here, we fluorescently label the candidate membranes and use live cell imaging to show that the merosome membrane derives from the host cell membrane. We also demonstrate that proteins in the host cell membrane are lost during merozoite liberation from the parasitophorous vacuole. Immediately after the breakdown of the parasitophorous vacuole membrane, the host cell mitochondria begin to degenerate and protein biosynthesis arrests. The intact host cell plasma membrane surrounding merosomes allows Plasmodium to mask itself from the host immune system and bypass the numerous Kupffer cells on its way into the bloodstream. This represents an effective strategy for evading host defenses before establishing a blood stage infection
    • 

    corecore