277 research outputs found

    Design and applicability of DNA arrays and DNA barcodes in biodiversity monitoring

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The rapid and accurate identification of species is a critical component of large-scale biodiversity monitoring programs. DNA arrays (micro and macro) and DNA barcodes are two molecular approaches that have recently garnered much attention. Here, we compare these two platforms for identification of an important group, the mammals.</p> <p>Results</p> <p>Our analyses, based on the two commonly used mitochondrial genes cytochrome <it>c </it>oxidase I (the standard DNA barcode for animal species) and cytochrome b (a common species-level marker), suggest that both arrays and barcodes are capable of discriminating mammalian species with high accuracy. We used three different datasets of mammalian species, comprising different sampling strategies. For DNA arrays we designed three probes for each species to address intraspecific variation. As for DNA barcoding, our analyses show that both cytochrome <it>c </it>oxidase I and cytochrome b genes, and even smaller fragments of them (mini-barcodes) can successfully discriminate species in a wide variety of specimens.</p> <p>Conclusion</p> <p>This study showed that DNA arrays and DNA barcodes are valuable molecular methods for biodiversity monitoring programs. Both approaches were capable of discriminating among mammalian species in our test assemblages. However, because designing DNA arrays require advance knowledge of target sequences, the use of this approach could be limited in large scale monitoring programs where unknown haplotypes might be encountered. DNA barcodes, by contrast, are sequencing-based and therefore could provide more flexibility in large-scale studies.</p

    Recovery of the mitochondrial COI barcode region in diverse Hexapoda through tRNA-based primers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>DNA barcoding uses a 650 bp segment of the mitochondrial cytochrome <it>c </it>oxidase I (COI) gene as the basis for an identification system for members of the animal kingdom and some other groups of eukaryotes. PCR amplification of the barcode region is a key step in the analytical chain, but it sometimes fails because of a lack of homology between the standard primer sets and target DNA.</p> <p>Results</p> <p>Two forward PCR primers were developed following analysis of all known arthropod mitochondrial genome arrangements and sequence alignment of the tRNA-W gene which was usually located within 200 bp upstream of the COI gene. These two primers were combined with a standard reverse primer (LepR1) to produce a cocktail which generated a barcode amplicon from 125 of 141 species that included representatives of 121 different families of Hexapoda. High quality sequences were recovered from 79% of the species including groups, such as scale insects, that invariably fail to amplify with standard primers.</p> <p>Conclusions</p> <p>A cocktail of two tRNA-W forward primers coupled with a standard reverse primer amplifies COI for most hexapods, allowing characterization of the standard barcode primer binding region in COI 5' as well as the barcode segment. The current results show that primers designed to bind to highly conserved gene regions upstream of COI will aid the amplification of this gene region in species where standard primers fail and provide valuable information to design a primer for problem groups.</p

    A universal DNA mini-barcode for biodiversity analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The goal of DNA barcoding is to develop a species-specific sequence library for all eukaryotes. A 650 bp fragment of the cytochrome <it>c </it>oxidase 1 (CO1) gene has been used successfully for species-level identification in several animal groups. It may be difficult in practice, however, to retrieve a 650 bp fragment from archival specimens, (because of DNA degradation) or from environmental samples (where universal primers are needed).</p> <p>Results</p> <p>We used a bioinformatics analysis using all CO1 barcode sequences from GenBank and calculated the probability of having species-specific barcodes for varied size fragments. This analysis established the potential of much smaller fragments, mini-barcodes, for identifying unknown specimens. We then developed a universal primer set for the amplification of mini-barcodes. We further successfully tested the utility of this primer set on a comprehensive set of taxa from all major eukaryotic groups as well as archival specimens.</p> <p>Conclusion</p> <p>In this study we address the important issue of minimum amount of sequence information required for identifying species in DNA barcoding. We establish a novel approach based on a much shorter barcode sequence and demonstrate its effectiveness in archival specimens. This approach will significantly broaden the application of DNA barcoding in biodiversity studies.</p

    Filling the gap - COI barcode resolution in eastern Palearctic birds

    Get PDF
    Β© 2009 Kerr et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution Licens

    C-Terminus Glycans with Critical Functional Role in the Maturation of Secretory Glycoproteins

    Get PDF
    The N-glycans of membrane glycoproteins are mainly exposed to the extracellular space. Human tyrosinase is a transmembrane glycoprotein with six or seven bulky N-glycans exposed towards the lumen of subcellular organelles. The central active site region of human tyrosinase is modeled here within less than 2.5 Γ… accuracy starting from Streptomyces castaneoglobisporus tyrosinase. The model accounts for the last five C-terminus glycosylation sites of which four are occupied and indicates that these cluster in two pairs - one in close vicinity to the active site and the other on the opposite side. We have analyzed and compared the roles of all tyrosinase N-glycans during tyrosinase processing with a special focus on the proximal to the active site N-glycans, s6:N337 and s7:N371, versus s3:N161 and s4:N230 which decorate the opposite side of the domain. To this end, we have constructed mutants of human tyrosinase in which its seven N-glycosylation sites were deleted. Ablation of the s6:N337 and s7:N371 sites arrests the post-translational productive folding process resulting in terminally misfolded mutants subjected to degradation through the mannosidase driven ERAD pathway. In contrast, single mutants of the other five N-glycans located either opposite to the active site or into the N-terminus Cys1 extension of tyrosinase are temperature-sensitive mutants and recover enzymatic activity at the permissive temperature of 31Β°C. Sites s3 and s4 display selective calreticulin binding properties. The C-terminus sites s7 and s6 are critical for the endoplasmic reticulum retention and intracellular disposal. Results herein suggest that individual N-glycan location is critical for the stability, regional folding control and secretion of human tyrosinase and explains some tyrosinase gene missense mutations associated with oculocutaneous albinism type I

    Genetic Networking of the Bemisia tabaci Cryptic Species Complex Reveals Pattern of Biological Invasions

    Get PDF
    BACKGROUND: A challenge within the context of cryptic species is the delimitation of individual species within the complex. Statistical parsimony network analytics offers the opportunity to explore limits in situations where there are insufficient species-specific morphological characters to separate taxa. The results also enable us to explore the spread in taxa that have invaded globally. METHODOLOGY/PRINCIPAL FINDINGS: Using a 657 bp portion of mitochondrial cytochrome oxidase 1 from 352 unique haplotypes belonging to the Bemisia tabaci cryptic species complex, the analysis revealed 28 networks plus 7 unconnected individual haplotypes. Of the networks, 24 corresponded to the putative species identified using the rule set devised by Dinsdale et al. (2010). Only two species proposed in Dinsdale et al. (2010) departed substantially from the structure suggested by the analysis. The analysis of the two invasive members of the complex, Mediterranean (MED) and Middle East - Asia Minor 1 (MEAM1), showed that in both cases only a small number of haplotypes represent the majority that have spread beyond the home range; one MEAM1 and three MED haplotypes account for >80% of the GenBank records. Israel is a possible source of the globally invasive MEAM1 whereas MED has two possible sources. The first is the eastern Mediterranean which has invaded only the USA, primarily Florida and to a lesser extent California. The second are western Mediterranean haplotypes that have spread to the USA, Asia and South America. The structure for MED supports two home range distributions, a Sub-Saharan range and a Mediterranean range. The MEAM1 network supports the Middle East - Asia Minor region. CONCLUSION/SIGNIFICANCE: The network analyses show a high level of congruence with the species identified in a previous phylogenetic analysis. The analysis of the two globally invasive members of the complex support the view that global invasion often involve very small portions of the available genetic diversity

    Efficacious Recombinant Influenza Vaccines Produced by High Yield Bacterial Expression: A Solution to Global Pandemic and Seasonal Needs

    Get PDF
    It is known that physical linkage of TLR ligands and vaccine antigens significantly enhances the immunopotency of the linked antigens. We have used this approach to generate novel influenza vaccines that fuse the globular head domain of the protective hemagglutinin (HA) antigen with the potent TLR5 ligand, flagellin. These fusion proteins are efficiently expressed in standard E. coli fermentation systems and the HA moiety can be faithfully refolded to take on the native conformation of the globular head. In mouse models of influenza infection, the vaccines elicit robust antibody responses that mitigate disease and protect mice from lethal challenge. These immunologically potent vaccines can be efficiently manufactured to support pandemic response, pre-pandemic and seasonal vaccines
    • …
    corecore