645 research outputs found

    High-velocity runaway stars from three-body encounters

    Full text link
    We performed numerical simulations of dynamical encounters between hard massive binaries and a very massive star (VMS; formed through runaway mergers of ordinary stars in the dense core of a young massive star cluster), in order to explore the hypothesis that this dynamical process could be responsible for the origin of high-velocity (\geq 200-400 km/s) early or late B-type stars. We estimated the typical velocities produced in encounters between very tight massive binaries and VMSs (of mass of \geq 200 Msun) and found that about 3-4 per cent of all encounters produce velocities of \geq 400 km/s, while in about 2 per cent of encounters the escapers attain velocities exceeding the Milky Ways's escape velocity. We therefore argue that the origin of high-velocity (\geq 200-400 km/s) runaway stars and at least some so-called hypervelocity stars could be associated with dynamical encounters between the tightest massive binaries and VMSs formed in the cores of star clusters. We also simulated dynamical encounters between tight massive binaries and single ordinary 50-100 Msun stars. We found that from 1 to \simeq 4 per cent of these encounters can produce runaway stars with velocities of \geq 300-400 km/s (typical of the bound population of high-velocity halo B-type stars) and occasionally (in less than 1 per cent of encounters) produce hypervelocity (\geq 700 km/s) late B-type escapers.Comment: 4 pages, 2 figure, to appear in Star Clusters -- Basic Galactic Building Blocks throughout Time and Space, Proceed. of the IAU Symp. 266, eds. R. de Grijs and J. Lepin

    Two candidate brown dwarf companions around core helium-burning stars

    Full text link
    Hot subdwarf stars of spectral type B (sdBs) are evolved, core helium-burning objects. The formation of those objects is puzzling, because the progenitor star has to lose almost its entire hydrogen envelope in the red-giant phase. Binary interactions have been invoked, but single sdBs exist as well. We report the discovery of two close hot subdwarf binaries with small radial velocity amplitudes. Follow-up photometry revealed reflection effects originating from cool irradiated companions, but no eclipses. The lower mass limits for the companions of CPD-64∘^{\circ}481 (0.048 M⊙0.048\,M_{\rm \odot}) and PHL\,457 (0.027 M⊙0.027\,M_{\rm \odot}) are significantly below the stellar mass limit. Hence they could be brown dwarfs unless the inclination is unfavourable. Two very similar systems have already been reported. The probability that none of them is a brown dwarf is very small, 0.02%. Hence we provide further evidence that substellar companions with masses that low are able to eject a common envelope and form an sdB star. Furthermore, we find that the properties of the observed sample of hot subdwarfs in reflection effect binaries is consistent with a scenario where single sdBs can still be formed via common envelope events, but their low-mass substellar companions do not survive.Comment: accepted to A&

    Wave-vector dependent intensity variations of the Kondo peak in photoemission from CePd3_3

    Full text link
    Strong angle-dependent intensity variations of the Fermi-level feature are observed in 4d - 4f resonant photoemission spectra of CePd3_3(111), that reveal the periodicity of the lattice and largest intensity close to the Gamma points of the surface Brillouin zone. In the framework of a simplified periodic Anderson model the phenomena may quantitatively be described by a wave-vector dependence of the electron hopping matrix elements caused by Fermi-level crossings of non-4f-derived energy bands

    The MUCHFUSS photometric campaign

    Full text link
    Hot subdwarfs (sdO/Bs) are the helium-burning cores of red giants, which lost almost all of their hydrogen envelopes. This mass loss is often triggered by common envelope interactions with close stellar or even substellar companions. Cool companions like late-type stars or brown dwarfs are detectable via characteristic light curve variations like reflection effects and often also eclipses. To search for such objects we obtained multi-band light curves of 26 close sdO/B binary candidates from the MUCHFUSS project with the BUSCA instrument. We discovered a new eclipsing reflection effect system (P=0.168938P=0.168938~d) with a low-mass M dwarf companion (0.116M⊙0.116 M_{\rm \odot}). Three more reflection effect binaries found in the course of the campaign were already published, two of them are eclipsing systems, in one system only showing the reflection effect but no eclipses the sdB primary is found to be pulsating. Amongst the targets without reflection effect a new long-period sdB pulsator was discovered and irregular light variations were found in two sdO stars. The found light variations allowed us to constrain the fraction of reflection effect binaries and the substellar companion fraction around sdB stars. The minimum fraction of reflection effect systems amongst the close sdB binaries might be greater than 15\% and the fraction of close substellar companions in sdB binaries might be as high as 8.0%8.0\%. This would result in a close substellar companion fraction to sdB stars of about 3\%. This fraction is much higher than the fraction of brown dwarfs around possible progenitor systems, which are solar-type stars with substellar companions around 1 AU, as well as close binary white dwarfs with brown dwarf companions. This might be a hint that common envelope interactions with substellar objects are preferentially followed by a hot subdwarf phase.Comment: accepted for A&

    The MultiSite Spectroscopic Telescope campaign: 2m spectroscopy of the V361 Hya variable PG1605+072

    Full text link
    We present results and analysis for the 2m spectroscopic part of the MultiSite Spectroscopic Telescope (MSST) campaign undertaken in May/June 2002. The goal of the project was to observe the pulsating subdwarf B star PG1605+072 simultaneously in velocity and photometry and to resolve as many of the >50 known modes as possible, which will allow a detailed asteroseismological analysis. We have obtained over 150 hours of spectroscopy, leading to an unprecedented noise level of only 207m/s. We report here the detection of 20 frequencies in velocity, with two more likely just below our detection threshold. In particular, we detect 6 linear combinations, making PG1605+072 only the second star known to show such frequencies in velocity. We investigate the phases of these combinations and their parent modes and find relationships between them that cannot be easily understood based on current theory. These observations, when combined with our simultaneous photometry, should allow asteroseismology of this most complicated of sdB pulsators.Comment: 9 pages, 5 figures, accepted for publication in A&A; Figure 1 at lower resolution than accepted versio

    Quantitative spectral analysis of the sdB star HD 188112: a helium-core white dwarf progenitor

    Full text link
    HD 188112 is a bright (V = 10.2 mag) hot subdwarf B (sdB) star with a mass too low to ignite core helium burning and is therefore considered as a pre-extremely low mass (ELM) white dwarf (WD). ELM WDs (M ≤\le 0.3 Msun) are He-core objects produced by the evolution of compact binary systems. We present in this paper a detailed abundance analysis of HD 188112 based on high-resolution Hubble Space Telescope (HST) near and far-ultraviolet spectroscopy. We also constrain the mass of the star's companion. We use hybrid non-LTE model atmospheres to fit the observed spectral lines and derive the abundances of more than a dozen elements as well as the rotational broadening of metallic lines. We confirm the previous binary system parameters by combining radial velocities measured in our UV spectra with the already published ones. The system has a period of 0.60658584 days and a WD companion with M ≥\geq 0.70 Msun. By assuming a tidally locked rotation, combined with the projected rotational velocity (v sin i = 7.9 ±\pm 0.3 km s−1^{-1}) we constrain the companion mass to be between 0.9 and 1.3 Msun. We further discuss the future evolution of the system as a potential progenitor of a (underluminous) type Ia supernova. We measure abundances for Mg, Al, Si, P, S, Ca, Ti, Cr, Mn, Fe, Ni, and Zn, as well as for the trans-iron elements Ga, Sn, and Pb. In addition, we derive upper limits for the C, N, O elements and find HD 188112 to be strongly depleted in carbon. We find evidence of non-LTE effects on the line strength of some ionic species such as Si II and Ni II. The metallic abundances indicate that the star is metal-poor, with an abundance pattern most likely produced by diffusion effects.Comment: Accepted for publication in A&
    • …
    corecore