316 research outputs found

    Разработка способа очистки газовой среды в процессе выращивания полупроводниковых монокристаллов

    Get PDF
    An individual’s zinc status has a significant impact on the immune system, and zinc deficiency, as well as supplementation, modulates immune function. To investigate the effects of zinc on different leukocyte subsets, we used microarray technology to analyze and compare the changes in mRNA expression in cell culture models of monocytes (THP-1), T cells (Jurkat), and B cells (Raji), in response to supplementation for 40 h with 50 μM zinc or 2.5 μM of the membrane-permeant zinc chelator TPEN [N,N,N′,N′-tetrakis-(2-pyridyl-methyl)ethylenediamine], respectively. In each cell type, several hundred genes were identified to be zinc sensitive, but only a total of seven genes were commonly regulated in all three cell lines. The majority of those genes were involved in zinc homeostasis, and none in immune function. Nevertheless, further analysis revealed that zinc affects entire functional networks of genes that are related to proinflammatory cytokines and cellular survival. Although the zinc-regulated activities are similar throughout the gene networks, the specific genes that are affected vary significantly between different cell types, a situation that helps to elucidate the disparity of the effects that zinc has on different leukocyte populations

    Magnetic and superconducting properties of Cd2Re2O7: Cd NMR and Re NQR

    Full text link
    We report Cd NMR and Re NQR studies on Cd2Re2O7, the first superconductor among pyrochlore oxides Tc=1 K. Re NQR spectrum at zero magnetic field below 100 K rules out any magnetic or charge order. The spin-lattice relaxation rate below Tc exhibits a pronounced coherence peak and behaves within the weak-coupling BCS theory with nearly isotropic energy gap. Cd NMR results point to moderate ferromagnetic enhancement at high temperatures followed by rapid decrease of the density of states below the structural transition temperature of 200 K.Comment: 4 pages, 4 figure

    A spheroid toxicity assay using magnetic 3D bioprinting and real-time mobile device-based imaging

    Get PDF
    An ongoing challenge in biomedical research is the search for simple, yet robust assays using 3D cell cultures for toxicity screening. This study addresses that challenge with a novel spheroid assay, wherein spheroids, formed by magnetic 3D bioprinting, contract immediately as cells rearrange and compact the spheroid in relation to viability and cytoskeletal organization. Thus, spheroid size can be used as a simple metric for toxicity. The goal of this study was to validate spheroid contraction as a cytotoxic endpoint using 3T3 fibroblasts in response to 5 toxic compounds (all-trans retinoic acid, dexamethasone, doxorubicin, 5′-fluorouracil, forskolin), sodium dodecyl sulfate (+control), and penicillin-G (−control). Real-time imaging was performed with a mobile device to increase throughput and efficiency. All compounds but penicillin-G significantly slowed contraction in a dose-dependent manner (Z’ = 0.88). Cells in 3D were more resistant to toxicity than cells in 2D, whose toxicity was measured by the MTT assay. Fluorescent staining and gene expression profiling of spheroids confirmed these findings. The results of this study validate spheroid contraction within this assay as an easy, biologically relevant endpoint for high-throughput compound screening in representative 3D environments

    New magnetic coherence effect in superconducting La_{2-x}Sr_{x}CuO_{4}

    Full text link
    We have used inelastic neutron scattering to examine the magnetic fluctuations at intermediate frequencies in the simplest high temperature superconductor, La_{2-x}Sr_{x}Cu_{4}. The suppression of the low energy magnetic response in the superconducting state is accompanied by an increase in the response at higher energies. Just above a threshold energy of ~7 meV there is additional scattering present below T_{c} which is characterised by an extraordinarily long coherence length, in excess of 50 \AA.Comment: 11 pages, RevTeX, 4 postscript figure

    A topological Dirac insulator in a quantum spin Hall phase : Experimental observation of first strong topological insulator

    Get PDF
    When electrons are subject to a large external magnetic field, the conventional charge quantum Hall effect \cite{Klitzing,Tsui} dictates that an electronic excitation gap is generated in the sample bulk, but metallic conduction is permitted at the boundary. Recent theoretical models suggest that certain bulk insulators with large spin-orbit interactions may also naturally support conducting topological boundary states in the extreme quantum limit, which opens up the possibility for studying unusual quantum Hall-like phenomena in zero external magnetic field. Bulk Bi1x_{1-x}Sbx_x single crystals are expected to be prime candidates for one such unusual Hall phase of matter known as the topological insulator. The hallmark of a topological insulator is the existence of metallic surface states that are higher dimensional analogues of the edge states that characterize a spin Hall insulator. In addition to its interesting boundary states, the bulk of Bi1x_{1-x}Sbx_x is predicted to exhibit three-dimensional Dirac particles, another topic of heightened current interest. Here, using incident-photon-energy-modulated (IPEM-ARPES), we report the first direct observation of massive Dirac particles in the bulk of Bi0.9_{0.9}Sb0.1_{0.1}, locate the Kramers' points at the sample's boundary and provide a comprehensive mapping of the topological Dirac insulator's gapless surface modes. These findings taken together suggest that the observed surface state on the boundary of the bulk insulator is a realization of the much sought exotic "topological metal". They also suggest that this material has potential application in developing next-generation quantum computing devices.Comment: 16 pages, 3 Figures. Submitted to NATURE on 25th November(2007
    corecore