9 research outputs found

    The transcription factor NR4A1 is essential for the development of a novel macrophage subset in the thymus

    Get PDF
    Tissue macrophages function to maintain homeostasis and regulate immune responses. While tissue macrophages derive from one of a small number of progenitor programs, the transcriptional requirements for site-specific macrophage subset development are more complex. We have identified a new tissue macrophage subset in the thymus and have discovered that its development is dependent on transcription factor NR4A1. Functionally, we find that NR4A1-dependent macrophages are critically important for clearance of apoptotic thymocytes. These macrophages are largely reduced or absent in mice lacking NR4A1, and Nr4a1-deficient mice have impaired thymocyte engulfment and clearance. Thus, NR4A1 functions as a master transcription factor for the development of this novel thymus-specific macrophage subset

    NR4A nuclear receptors in immunity and atherosclerosis

    No full text
    To understand chronic inflammatory diseases such as atherosclerosis, we require in-depth knowledge on immune-cell differentiation, function of specific immune-cell subsets and endothelial cell-mediated extravasation. In this review, we summarize a number of very recent observations on the pivotal function of NR4A nuclear receptors in immunity and atherosclerosis. NR4A nuclear receptors are involved in negative selection of thymocytes, Treg differentiation and the development of Ly6C monocytes. Nur77 and Nurr1 attenuate atherosclerosis in mice whereas NOR-1 aggravates vascular lesion formation. These exciting, novel insights on the function of NR4A nuclear receptors in immunity, vascular cells and atherosclerosis will initiate a plethora of studies to understand the underlying molecular mechanisms, which will culminate in the identification of novel NR4A targets to modulate chronic inflammatory diseas

    Patrolling monocytes control tumor metastasis to the lung

    No full text
    The immune system plays an important role in regulating tumor growth and metastasis. Classical monocytes promote tumorigenesis and cancer metastasis, but how nonclassical "patrolling" monocytes (PMo) interact with tumors is unknown. Here we show that PMo are enriched in the microvasculature of the lung and reduce tumor metastasis to lung in multiple mouse metastatic tumor models. Nr4a1-deficient mice, which specifically lack PMo, showed increased lung metastasis in vivo. Transfer of Nr4a1-proficient PMo into Nr4a1-deficient mice prevented tumor invasion in the lung. PMo established early interactions with metastasizing tumor cells, scavenged tumor material from the lung vasculature, and promoted natural killer cell recruitment and activation. Thus, PMo contribute to cancer immunosurveillance and may be targets for cancer immunotherapy
    corecore