5 research outputs found
Formulation, in-vitro characterization and clinical evaluation of curcumin in-situ gel for treatment of periodontitis
This study aimed to develop syringeable in-situ curcumin (cur) gel for the treatment of periodontal pockets as well as to evaluate the clinical efficacy of Cur in-situ gel formulation. Different in-situ gel formulations of Cur were prepared using 30% of pluronic F127, and 1% of carbopol P934. The formulations were evaluated regarding gelation temperature, pH, viscosity, syringeability study, in-vitro release and chemical stability of cur. The effect of aging of gel formulations for 3months in refrigerator was investigated. The selected formulation was clinically evaluated through the determination of probing depth, plaque index, and bleeding index at baseline and 1 month after application. The formulations showed accepted gelation temperature ranging from 28 to 34 °C and all had pH value of 4. The viscosity of the formulations at 4 °C ranged from 19 000 to 37 000 cP. All formulations were easily syringeable through 21 gauge needle at cold temperature. Curcumin stability during the release study was maintained. Aging showed no significant effect on release profile, drug content, or the pH after 3 months, while it showed a slight increase in viscosity with concomitant decrease in gelation temperature. Selected formulations delivered into periodontal pocket evaluated clinically showed to be effective. The treated group revealed that the adjunctive use of intracrevicular 2% curcumin in-situ gel adjunct to mechanical treatment in patients with adult periodontitis could aid in significant clinical reduction of probing depth, bleeding index, and to less extent of plaque. This indicates that curcumin in this novel drug delivery system is an excellent candidate for periodontal disease treatment
Nanotechnology-based drug delivery systems for Alzheimer's disease management: Technical, industrial, and clinical challenges
Alzheimer's disease (AD) is a neurodegenerative disease with high prevalence in the rapidly growing elderly population in the developing world. The currently FDA approved drugs for the management of symptomatology of AD are marketed mainly as conventional oral medications. Due to their gastrointestinal side effects and lack of brain targeting, these drugs and dosage regiments hinder patient compliance and lead to treatment discontinuation. Nanotechnology-based drug delivery systems (NTDDS) administered by different routes can be considered as promising tools to improve patient compliance and achieve better therapeutic outcomes. Despite extensive research, literature screening revealed that clinical activities involving NTDDS application in research for AD are lagging compared to NTDDS for other diseases such as cancers. The industrial perspectives, processability, and cost/benefit ratio of using NTDDS for AD treatment are usually overlooked. Moreover, active and passive immunization against AD are by far the mostly studied alternative AD therapies because conventional oral drug therapy is not yielding satisfactorily results. NTDDS of approved drugs appear promising to transform this research from ‘paper to clinic’ and raise hope for AD sufferers and their caretakers. This review summarizes the recent studies conducted on NTDDS for AD treatment, with a primary focus on the industrial perspectives and processability. Additionally, it highlights the ongoing clinical trials for AD management