12 research outputs found

    Agreement Between Magnetic Resonance Imaging Proton Density Fat Fraction Measurements and Pathologist-assigned Steatosis Grades of Liver Biopsies from Adults with Nonalcoholic Steatohepatitis

    Get PDF
    Background & Aims We assessed the diagnostic performance of magnetic resonance imaging (MRI) proton density fat fraction (PDFF) in grading hepatic steatosis and change in hepatic steatosis in adults with nonalcoholic steatohepatitis (NASH) in a multi-center study, using central histology as reference. Methods We collected data from 113 adults with NASH participating in a multi-center, randomized, double-masked, placebo-controlled, phase 2b trial to compare the efficacy cross-sectionally and longitudinally of obeticholic acid vs placebo. Hepatic steatosis was assessed at baseline and after 72 weeks of obeticholic acid or placebo by liver biopsy and MRI (scanners from different manufacturers, at 1.5T or 3T). We compared steatosis estimates by PDFF vs histology. Histologic steatosis grade was scored in consensus by a pathology committee. Cross-validated receiver operating characteristic (ROC) analyses were performed. Results At baseline, 34% of subjects had steatosis grade 0 or 1, 39% had steatosis grade 2, and 27% had steatosis grade 3; corresponding mean PDFF values were 9.8%±3.7%, 18.1%±4.3%, and 30.1%±8.1%. PDFF classified steatosis grade 0–1 vs 2–3 with an area under the ROC curve (AUROC) of 0.95 (95% CI, 0.91–0.98), and grade 0–2 vs grade 3 steatosis with an AUROC of 0.96 (95% CI, 0.93–0.99). PDFF cut-off values at 90% specificity were 16.3% for grades 2–3 and 21.7% for grade 3, with corresponding sensitivities of 83% and 84%. After 72 weeks' of obeticholic vs placebo, 42% of subjects had a reduced steatosis grade (mean reduction in PDFF from baseline of 7.4%±8.7%), 49% had no change in steatosis grade (mean increase in PDFF from baseline of 0.3%±6.3%), and 9% had an increased steatosis grade (mean increase in PDFF from baseline of 7.7%±6.0%). PDFF change identified subjects with reduced steatosis grade with an AUROC of 0.81 (95% CI, 0.71–0.91) and increased steatosis grade with an AUROC of 0.81 (95% CI, 0.63–0.99). A PDFF reduction of 5.15% identified subjects with reduced steatosis grade with 90% specificity and 58% sensitivity, whereas a PDFF increase of 5.6% identified those with increased steatosis grade with 90% specificity and 57% sensitivity. Conclusions Based on data from a phase 2 randomized controlled trial of adults with NASH, PDFF estimated by MRI scanners of different field strength and at different sites, accurately classifies grades and changes in hepatic steatosis when histologic analysis of biopsies is used as a reference

    Diagnostic per-patient accuracy of an abbreviated hepatobiliary phase gadoxetic acid-enhanced MRI for hepatocellular carcinoma surveillance.

    No full text
    OBJECTIVE. The purpose of this study is to evaluate the per-patient diagnostic performance of an abbreviated gadoxetic acid-enhanced MRI protocol for hepatocellular carcinoma (HCC) surveillance. MATERIALS AND METHODS. A retrospective review identified 298 consecutive patients at risk for HCC enrolled in a gadoxetic acid-enhanced MRI-based HCC surveillance program. For each patient, the first gadoxetic acid-enhanced MRI was analyzed. To simulate an abbreviated protocol, two readers independently read two image sets per patient: set 1 consisted of T1-weighted 20-minute hepatobiliary phase and T2-weighted single-shot fast spin-echo (SSFSE) images; set 2 included diffusion-weighted imaging (DWI) and images from set 1. Image sets were scored as positive or negative according to the presence of at least one nodule 10 mm or larger that met the predetermined criteria. Agreement was assessed using Cohen kappa statistics. A composite reference standard was used to determine the diagnostic performance of each image set for each reader. RESULTS. Interreader agreement was substantial for both image sets (κ = 0.72 for both) and intrareader agreement was excellent (κ = 0.97-0.99). Reader performance for image set 1 was sensitivity of 85.7% for reader A and 79.6% for reader B, specificity of 91.2% for reader A and 95.2% for reader B, and negative predictive value of 97.0% for reader A and 96.0% for reader B. Reader performance for image set 2 was nearly identical, with only one of 298 examinations scored differently on image set 2 compared with set 1. CONCLUSION. An abbreviated MRI protocol consisting of T2-weighted SSFSE and gadoxetic acid-enhanced hepatobiliary phase has high negative predictive value and may be an acceptable method for HCC surveillance. The inclusion of a DWI sequence did not significantly alter the diagnostic performance of the abbreviated protocol

    Feasibility of and agreement between MR imaging and spectroscopic estimation of hepatic proton density fat fraction in children with known or suspected nonalcoholic fatty liver disease.

    No full text
    PurposeTo assess feasibility of and agreement between magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) for estimating hepatic proton density fat fraction (PDFF) in children with known or suspected nonalcoholic fatty liver disease (NAFLD).Materials and methodsChildren were included in this study from two previous research studies in each of which three MRI and three MRS acquisitions were obtained. Sequence acceptability, and MRI- and MRS-estimated PDFF were evaluated. Agreement of MRI- with MRS-estimated hepatic PDFF was assessed by linear regression and Bland-Altman analysis. Age, sex, BMI-Z score, acquisition time, and artifact score effects on MRI- and MRS-estimated PDFF agreement were assessed by multiple linear regression.ResultsEighty-six children (61 boys and 25 girls) were included in this study. Slope and intercept from regressing MRS-PDFF on MRI-PDFF were 0.969 and 1.591%, respectively, and the Bland-Altman bias and 95% limits of agreement were 1.17% ± 2.61%. MRI motion artifact score was higher in boys than girls (by 0.21, p = 0.021). Higher BMI-Z score was associated with lower agreement between MRS and MRI (p = 0.045).ConclusionHepatic PDFF estimation by both MRI and MRS is feasible, and MRI- and MRS-estimated PDFF agree closely in children with known or suspected NAFLD
    corecore