32 research outputs found
Use of biochemical tests of placental function for improving pregnancy outcome
BACKGROUND:
The placenta has an essential role in determining the outcome of pregnancy. Consequently, biochemical measurement of placentally-derived factors has been suggested as a means to improve fetal and maternal outcome of pregnancy.
OBJECTIVES:
To assess whether clinicians' knowledge of the results of biochemical tests of placental function is associated with improvement in fetal or maternal outcome of pregnancy.
SEARCH METHODS:
We searched the Cochrane Pregnancy and Childbirth Group's Trials Register (31 July 2015) and reference lists of retrieved studies.
SELECTION CRITERIA:
Randomised, cluster-randomised or quasi-randomised controlled trials assessing the merits of the use of biochemical tests of placental function to improve pregnancy outcome.Studies were eligible if they compared women who had placental function tests and the results were available to their clinicians with women who either did not have the tests, or the tests were done but the results were not available to the clinicians. The placental function tests were any biochemical test of placental function carried out using the woman's maternal biofluid, either alone or in combination with other placental function test/s.
DATA COLLECTION AND ANALYSIS:
Two review authors independently assessed trials for inclusion, extracted data and assessed trial quality. Authors of published trials were contacted for further information.
MAIN RESULTS:
Three trials were included, two quasi-randomised controlled trials and one randomised controlled trial. One trial was deemed to be at low risk of bias while the other two were at high risk of bias. Different biochemical analytes were measured - oestrogen was measured in one trial and the other two measured human placental lactogen (hPL). One trial did not contribute outcome data, therefore, the results of this review are based on two trials with 740 participants.There was no evidence of a difference in the incidence of death of a baby (risk ratio (RR) 0.88, 95% confidence interval (CI) 0.36 to 2.13, two trials, 740 participants (very low quality evidence)) or the frequency of a small-for-gestational-age infant (RR 0.44, 95% CI 0.16 to 1.19, one trial, 118 participants (low quality evidence)).In terms of this review's secondary outcomes, there was no evidence of a clear difference between women who had biochemical tests of placental function compared with standard antenatal care for the incidence of stillbirth (RR 0.56, 95% CI 0.16 to 1.88, two trials, 740 participants (very low quality evidence)) or neonatal death (RR 1.62, 95% CI 0.39 to 6.74, two trials, 740 participants, very low quality evidence)) although the directions of any potential effect were in opposing directions. There was no evidence of a difference between groups in elective delivery (RR 0.98, 95% CI 0.84 to 1.14, two trials, 740 participants (low quality evidence)), caesarean section (one trial, RR 0.48, 95% CI 0.15 to 1.52, one trial, 118 participants (low quality evidence)), change in anxiety score (mean difference -2.40, 95% CI -4.78 to -0.02, one trial, 118 participants), admissions to neonatal intensive care (RR 0.32, 95% CI 0.03 to 3.01, one trial, 118 participants), and preterm birth before 37 weeks' gestation (RR 2.90, 95% CI 0.12 to 69.81, one trial, 118 participants). One trial (118 participants) reported that there were no cases of serious neonatal morbidity. Maternal death was not reported.A number of this review's secondary outcomes relating to the baby were not reported in the included studies, namely: umbilical artery pH seven days, pre-eclampsia, eclampsia, and women's perception of care).
AUTHORS' CONCLUSIONS:
There is insufficient evidence to support the use of biochemical tests of placental function to reduce perinatal mortality or increase identification of small-for-gestational-age infants. However, we were only able to include data from two studies that measured oestrogens and hPL. The quality of the evidence was low or very low.Two of the trials were performed in the 1970s on women with a variety of antenatal complications and this evidence cannot be generalised to women at low-risk of complications or groups of women with specific pregnancy complications (e.g. fetal growth restriction). Furthermore, outcomes described in the 1970s may not reflect what would be expected at present. For example, neonatal mortality rates have fallen substantially, such that an infant delivered at 28 weeks would have a greater chance of survival were those studies repeated; this may affect the primary outcome of the meta-analysis.With data from just two studies (740 women), this review is underpowered to detect a difference in the incidence of death of a baby or the frequency of a small-for-gestational-age infant as these have a background incidence of approximately 0.75% and 10% of pregnancies respectively. Similarly, this review is underpowered to detect differences between serious and/or rare adverse events such as severe neonatal morbidity. Two of the three included studies were quasi-randomised, with significant risk of bias from group allocation. Additionally, there may be performance bias as in one of the two studies contributing data, participants receiving standard care did not have venepuncture, so clinicians treating participants could identify which arm of the study they were in. Future studies should consider more robust randomisation methods and concealment of group allocation and should be adequately powered to detect differences in rare adverse events.The studies identified in this review examined two different analytes: oestrogens and hPL. There are many other placental products that could be employed as surrogates of placental function, including: placental growth factor (PlGF), human chorionic gonadotrophin (hCG), plasma protein A (PAPP-A), placental protein 13 (PP-13), pregnancy-specific glycoproteins and progesterone metabolites and further studies should be encouraged to investigate these other placental products. Future randomised controlled trials should test analytes identified as having the best predictive reliability for placental dysfunction leading to small-for-gestational-age infants and perinatal mortality
Development of core outcome sets for studies relating to awareness and clinical management of reduced fetal movement
Objective: This study aimed to create core outcome sets (COSs) for use in research studies relating to the awareness and clinical management of reduced fetal movement (RFM). Design: Delphi survey and consensus process. Setting: International. Population: A total of 128 participants (40 parents, 19 researchers and 65 clinicians) from 16 countries. Methods: A systematic literature review was conducted to identify outcomes in studies of interventions relating to the awareness and the clinical management of RFM. Using these outcomes as a preliminary list, stakeholders rated the importance of these outcomes for inclusion in COSs for studies of: (i) awareness of RFM; and (ii) clinical management of RFM. Main outcome measures: Preliminary lists of outcomes were discussed at consensus meetings where two COSs (one for studies of RFM awareness and one for studies of clinical management of RFM). Results: The first round of the Delphi survey was completed by 128 participants, 66% of whom (n = 84) completed all three rounds. Fifty outcomes identified by the systematic review, after multiple definitions were combined, were voted on in round one. Two outcomes were added in round one, and as such 52 outcomes were voted on in two lists in rounds two and three. The COSs for studies of RFM awareness and clinical management are comprised of eight outcomes (four maternal and four neonatal) and 10 outcomes (two maternal and eight neonatal), respectively. Conclusions: These COSs provide researchers with the minimum set of outcomes to be measured and reported in studies relating to the awareness and the clinical management of RFM.</p
Can promoting awareness of fetal movements and focusing interventions reduce fetal mortality? A stepped-wedge cluster randomised trial (AFFIRM)
Background In 2013, the stillbirth rate in the UK was 4.2 per 1000 live births, ranking 24th out of 49 high-income countries, with an annual rate of reduction of only 1.4% per year. The majority of stillbirths occur in normally formed infants, with (retrospective) evidence of placental insufficiency the most common clinical finding. Maternal perception of reduced fetal movements (RFM) is associated with placental insufficiency and increased risk of subsequent stillbirth. This study will test the hypothesis that the introduction of a package of care to increase women's awareness of the need for prompt reporting of RFM and standardised management to identify fetal compromise with timely delivery in confirmed cases, will reduce the rate of stillbirth. Following the introduction of a similar intervention in Norway the odds of stillbirth fell by 30%, but the efficacy of this intervention (and possible adverse effects and implications for service delivery) has not been tested in a randomised trial. Methods We describe a stepped-wedge cluster trial design, in which participating hospitals in the UK and Ireland will be randomised to the timing of introduction of the care package. Outcomes (including the primary outcome of stillbirth) will be derived from detailed routinely collected maternity data, allowing us to robustly test our hypothesis. The degree of implementation of the intervention will be assessed in each site. A nested qualitative study will examine the acceptability of the intervention to women and healthcare providers and identify process issues including barriers to implementation. Ethics and dissemination Ethical approval was obtained from the Scotland A Research Ethics Committee (Ref 13/SS/0001) and from Research and Development offices in participating maternity units. The study started in February 2014 and delivery of the intervention completed in December 2016. Results of the study will be submitted for publication in peer-reviewed journals and disseminated to local investigating sites to inform education and care of women presenting with RFM. Trial registration number www.clinicaltrials.gov NCT01777022. Version Protocol Version 4.2, 3 February 2017
Use of biochemical tests of placental function for improving pregnancy outcome
BACKGROUND:
The placenta has an essential role in determining the outcome of pregnancy. Consequently, biochemical measurement of placentally-derived factors has been suggested as a means to improve fetal and maternal outcome of pregnancy.
OBJECTIVES:
To assess whether clinicians' knowledge of the results of biochemical tests of placental function is associated with improvement in fetal or maternal outcome of pregnancy.
SEARCH METHODS:
We searched the Cochrane Pregnancy and Childbirth Group's Trials Register (31 July 2015) and reference lists of retrieved studies.
SELECTION CRITERIA:
Randomised, cluster-randomised or quasi-randomised controlled trials assessing the merits of the use of biochemical tests of placental function to improve pregnancy outcome.Studies were eligible if they compared women who had placental function tests and the results were available to their clinicians with women who either did not have the tests, or the tests were done but the results were not available to the clinicians. The placental function tests were any biochemical test of placental function carried out using the woman's maternal biofluid, either alone or in combination with other placental function test/s.
DATA COLLECTION AND ANALYSIS:
Two review authors independently assessed trials for inclusion, extracted data and assessed trial quality. Authors of published trials were contacted for further information.
MAIN RESULTS:
Three trials were included, two quasi-randomised controlled trials and one randomised controlled trial. One trial was deemed to be at low risk of bias while the other two were at high risk of bias. Different biochemical analytes were measured - oestrogen was measured in one trial and the other two measured human placental lactogen (hPL). One trial did not contribute outcome data, therefore, the results of this review are based on two trials with 740 participants.There was no evidence of a difference in the incidence of death of a baby (risk ratio (RR) 0.88, 95% confidence interval (CI) 0.36 to 2.13, two trials, 740 participants (very low quality evidence)) or the frequency of a small-for-gestational-age infant (RR 0.44, 95% CI 0.16 to 1.19, one trial, 118 participants (low quality evidence)).In terms of this review's secondary outcomes, there was no evidence of a clear difference between women who had biochemical tests of placental function compared with standard antenatal care for the incidence of stillbirth (RR 0.56, 95% CI 0.16 to 1.88, two trials, 740 participants (very low quality evidence)) or neonatal death (RR 1.62, 95% CI 0.39 to 6.74, two trials, 740 participants, very low quality evidence)) although the directions of any potential effect were in opposing directions. There was no evidence of a difference between groups in elective delivery (RR 0.98, 95% CI 0.84 to 1.14, two trials, 740 participants (low quality evidence)), caesarean section (one trial, RR 0.48, 95% CI 0.15 to 1.52, one trial, 118 participants (low quality evidence)), change in anxiety score (mean difference -2.40, 95% CI -4.78 to -0.02, one trial, 118 participants), admissions to neonatal intensive care (RR 0.32, 95% CI 0.03 to 3.01, one trial, 118 participants), and preterm birth before 37 weeks' gestation (RR 2.90, 95% CI 0.12 to 69.81, one trial, 118 participants). One trial (118 participants) reported that there were no cases of serious neonatal morbidity. Maternal death was not reported.A number of this review's secondary outcomes relating to the baby were not reported in the included studies, namely: umbilical artery pH seven days, pre-eclampsia, eclampsia, and women's perception of care).
AUTHORS' CONCLUSIONS:
There is insufficient evidence to support the use of biochemical tests of placental function to reduce perinatal mortality or increase identification of small-for-gestational-age infants. However, we were only able to include data from two studies that measured oestrogens and hPL. The quality of the evidence was low or very low.Two of the trials were performed in the 1970s on women with a variety of antenatal complications and this evidence cannot be generalised to women at low-risk of complications or groups of women with specific pregnancy complications (e.g. fetal growth restriction). Furthermore, outcomes described in the 1970s may not reflect what would be expected at present. For example, neonatal mortality rates have fallen substantially, such that an infant delivered at 28 weeks would have a greater chance of survival were those studies repeated; this may affect the primary outcome of the meta-analysis.With data from just two studies (740 women), this review is underpowered to detect a difference in the incidence of death of a baby or the frequency of a small-for-gestational-age infant as these have a background incidence of approximately 0.75% and 10% of pregnancies respectively. Similarly, this review is underpowered to detect differences between serious and/or rare adverse events such as severe neonatal morbidity. Two of the three included studies were quasi-randomised, with significant risk of bias from group allocation. Additionally, there may be performance bias as in one of the two studies contributing data, participants receiving standard care did not have venepuncture, so clinicians treating participants could identify which arm of the study they were in. Future studies should consider more robust randomisation methods and concealment of group allocation and should be adequately powered to detect differences in rare adverse events.The studies identified in this review examined two different analytes: oestrogens and hPL. There are many other placental products that could be employed as surrogates of placental function, including: placental growth factor (PlGF), human chorionic gonadotrophin (hCG), plasma protein A (PAPP-A), placental protein 13 (PP-13), pregnancy-specific glycoproteins and progesterone metabolites and further studies should be encouraged to investigate these other placental products. Future randomised controlled trials should test analytes identified as having the best predictive reliability for placental dysfunction leading to small-for-gestational-age infants and perinatal mortality