6 research outputs found

    Field evaluation of malaria malachite green loop-mediated isothermal amplification in health posts in Roraima state, Brazil

    No full text
    Abstract Background Microscopic detection of malaria parasites is the standard method for clinical diagnosis of malaria in Brazil. However, malaria epidemiological surveillance studies specifically aimed at the detection of low-density infection and asymptomatic cases will require more sensitive and field-usable tools. The diagnostic accuracy of the colorimetric malachite green, loop-mediated, isothermal amplification (MG-LAMP) assay was evaluated in remote health posts in Roraima state, Brazil. Methods Study participants were prospectively enrolled from health posts (healthcare-seeking patients) and from nearby villages (healthy participants) in three different study sites. The MG-LAMP assay and microscopy were performed in the health posts. Two independent readers scored the MG-LAMP tests as positive (blue/green) or negative (clear). Sensitivity and specificity of local microscopy and MG-LAMP were calculated using results of PET-PCR as a reference. Results A total of 91 participants were enrolled. There was 100% agreement between the two MG-LAMP readers (Kappa = 1). The overall sensitivity and specificity of MG-LAMP were 90.0% (95% confidence interval (CI) 76.34–97.21%) and 94% (95% CI 83.76–98.77%), respectively. The sensitivity and specificity of local microscopy were 83% (95% CI 67.22–92.66%) and 100% (95% CI 93.02–100.00%), respectively. PET-PCR detected six mixed infections (infection with both Plasmodium falciparum and Plasmodium vivax); two of these were also detected by MG-LAMP and one by microscopy. Microscopy did not detect any Plasmodium infection in the 26 healthy participants; MG-LAMP detected Plasmodium in five of these and PET-PCR assay detected infection in three. Overall, performing the MG-LAMP in this setting did not present any particular challenges. Conclusion MG-LAMP is a sensitive and specific assay that may be useful for the detection of malaria parasites in remote healthcare settings. These findings suggest that it is possible to implement simple molecular tests in facilities with limited resources

    Plasmodium female gamete surface HSP90 is a key determinant for fertilization

    No full text
    ABSTRACTPlasmodium fertilization, an essential step for the development of the malaria parasite in the mosquito, is a prime target for blocking pathogen transmission. Using phage peptide display screening, we identified MG1, a peptide that binds to male gametes and inhibits fertilization, presumably by competing with a female gamete ligand. Anti-MG1 antibodies bind to the female gamete surface and, by doing so, also inhibit fertilization. We determined that this antibody recognizes HSP90 on the surface of Plasmodium female gametes. Our findings establish Plasmodium HSP90 as a prime target for the development of a transmission-blocking vaccine.IMPORTANCEMalaria kills over half a million people every year and this number has not decreased in recent years. The development of new tools to combat this disease is urgently needed. In this article, we report the identification of a key molecule—HSP90—on the surface of the parasite’s female gamete that is required for fertilization to occur and for the completion of the parasite cycle in the mosquito. HSP90 is a promising candidate for the development of a transmission-blocking vaccine

    A redox-active crosslinker reveals an essential and inhibitable oxidative folding network in the endoplasmic reticulum of malaria parasites.

    No full text
    Malaria remains a major global health problem, creating a constant need for research to identify druggable weaknesses in P. falciparum biology. As important components of cellular redox biology, members of the Thioredoxin (Trx) superfamily of proteins have received interest as potential drug targets in Apicomplexans. However, the function and essentiality of endoplasmic reticulum (ER)-localized Trx-domain proteins within P. falciparum has not been investigated. We generated conditional mutants of the protein PfJ2-an ER chaperone and member of the Trx superfamily-and show that it is essential for asexual parasite survival. Using a crosslinker specific for redox-active cysteines, we identified PfJ2 substrates as PfPDI8 and PfPDI11, both members of the Trx superfamily as well, which suggests a redox-regulatory role for PfJ2. Knockdown of these PDIs in PfJ2 conditional mutants show that PfPDI11 may not be essential. However, PfPDI8 is required for asexual growth and our data suggest it may work in a complex with PfJ2 and other ER chaperones. Finally, we show that the redox interactions between these Trx-domain proteins in the parasite ER and their substrates are sensitive to small molecule inhibition. Together these data build a model for how Trx-domain proteins in the P. falciparum ER work together to assist protein folding and demonstrate the suitability of ER-localized Trx-domain proteins for antimalarial drug development

    A redox-active crosslinker reveals an essential and inhibitable oxidative folding network in the endoplasmic reticulum of malaria parasites.

    No full text
    Malaria remains a major global health problem, creating a constant need for research to identify druggable weaknesses in P. falciparum biology. As important components of cellular redox biology, members of the Thioredoxin (Trx) superfamily of proteins have received interest as potential drug targets in Apicomplexans. However, the function and essentiality of endoplasmic reticulum (ER)-localized Trx-domain proteins within P. falciparum has not been investigated. We generated conditional mutants of the protein PfJ2-an ER chaperone and member of the Trx superfamily-and show that it is essential for asexual parasite survival. Using a crosslinker specific for redox-active cysteines, we identified PfJ2 substrates as PfPDI8 and PfPDI11, both members of the Trx superfamily as well, which suggests a redox-regulatory role for PfJ2. Knockdown of these PDIs in PfJ2 conditional mutants show that PfPDI11 may not be essential. However, PfPDI8 is required for asexual growth and our data suggest it may work in a complex with PfJ2 and other ER chaperones. Finally, we show that the redox interactions between these Trx-domain proteins in the parasite ER and their substrates are sensitive to small molecule inhibition. Together these data build a model for how Trx-domain proteins in the P. falciparum ER work together to assist protein folding and demonstrate the suitability of ER-localized Trx-domain proteins for antimalarial drug development

    Integrated Information Systems, SAS 94 & Auditors

    No full text
    corecore