304 research outputs found

    An operational overview of the EXport Processes in the Ocean from RemoTe Sensing (EXPORTS) Northeast Pacific field deployment

    Get PDF
    The goal of the EXport Processes in the Ocean from RemoTe Sensing (EXPORTS) field campaign is to develop a predictive understanding of the export, fate, and carbon cycle impacts of global ocean net primary production. To accomplish this goal, observations of export flux pathways, plankton community composition, food web processes, and optical, physical, and biogeochemical (BGC) properties are needed over a range of ecosystem states. Here we introduce the first EXPORTS field deployment to Ocean Station Papa in the Northeast Pacific Ocean during summer of 2018, providing context for other papers in this special collection. The experiment was conducted with two ships: a Process Ship, focused on ecological rates, BGC fluxes, temporal changes in food web, and BGC and optical properties, that followed an instrumented Lagrangian float; and a Survey Ship that sampled BGC and optical properties in spatial patterns around the Process Ship. An array of autonomous underwater assets provided measurements over a range of spatial and temporal scales, and partnering programs and remote sensing observations provided additional observational context. The oceanographic setting was typical of late-summer conditions at Ocean Station Papa: a shallow mixed layer, strong vertical and weak horizontal gradients in hydrographic properties, sluggish sub-inertial currents, elevated macronutrient concentrations and low phytoplankton abundances. Although nutrient concentrations were consistent with previous observations, mixed layer chlorophyll was lower than typically observed, resulting in a deeper euphotic zone. Analyses of surface layer temperature and salinity found three distinct surface water types, allowing for diagnosis of whether observed changes were spatial or temporal. The 2018 EXPORTS field deployment is among the most comprehensive biological pump studies ever conducted. A second deployment to the North Atlantic Ocean occurred in spring 2021, which will be followed by focused work on data synthesis and modeling using the entire EXPORTS data set

    Effects of mu- and kappa-2 opioid receptor agonists on pain and rearing behaviors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Management of pain involves a balance between inhibition of pain and minimization of side effects; therefore, in developing new analgesic compounds, one must consider the effects of treatment on both pain processing and behavior. The purpose of this study was to evaluate the effects of the mu and kappa-2 opioid receptor agonists on general and pain behavioral outcomes.</p> <p>Methods</p> <p>As a general behavioral assessment, we modified the cylinder rearing assay and recorded the number and duration of rearing events. Thermal sensitivity was evaluated using either a reflexive measure of hindpaw withdrawal latency to a radiant heat source or using an orofacial operant thermal assay. Acetic acid-induced visceral pain and capsaicin-induced neurogenic inflammatory pain were used as painful stimuli. The mu-opioid receptor agonist, morphine or the kappa-2 receptor agonist GR89696 was administered 30 min prior to testing. A general linear model repeated measures analysis was completed for baseline session comparisons and an analysis of variance was used to evaluate the effects of treatment on each outcome measure (SPSS Inc). When significant differences were found, post-hoc comparisons were made using the Tukey honestly significant difference test. *P < 0.05 was considered significant in all instances.</p> <p>Results</p> <p>We found that morphine and GR89,696 dose-dependently decreased the number of reaching events and rearing duration. Rearing behavior was not affected at 0.5 mg/kg for morphine, 1.25 × 10<sup>-4 </sup>mg/kg for GR89,696. Hindpaw thermal sensitivity was significantly increased only at the highest doses for each drug. At the highest dose that did not significantly influence rearing behavior, we found that visceral and neurogenic inflammatory pain was not affected following GR89,696 administration and morphine was only partially effective for blocking visceral pain.</p> <p>Conclusion</p> <p>This study demonstrated that high levels of the opioids produced significant untoward effects and made distinguishing an analgesic versus a more general effect more difficult. Quantification of rearing behavior in conjunction with standard analgesic assays can help in gaining a better appreciation of true analgesic efficacy of experimental drugs.</p

    Blending Credit & Non-Credit Courses: Best Practices, Opportunities, Barriers

    Get PDF
    Community colleges offer an array of programs designed to help students meet different goals. Noncredit education provides training for students seeking targeted, often shorter, courses for personal and professional enrichment (Cohen, Brawer, & Kisker, 2014). Many community colleges are now increasingly emphasizing noncredit workforce education as they support regional workforce development efforts and strive to meet the needs of their local industry partners (Van Noy, Jacobs, Korey, Bailey, & Hughes, 2008). Despite the millions of students enrolled in these courses and their potential to generate revenue for the institutions delivering programs, Voorhees and Milam (2005) refer to noncredit community college education as the “hidden college” and existing research on noncredit offerings is limited. Blending community college credit and noncredit programs with thoughtful and intentional strategies will benefit the students and the institutions. Van Noy, Jacobs, Korey, Bailey, and Hughes (2008) made five recommendations for strengthening noncredit education based on their research. They included the need to expand state funding with clear goals, to increase coordination of credit and noncredit offerings, to promote articulation of noncredit courses into credit programs, to establish non-degree forms of validation for noncredit programs, and to capture more information regarding employment outcomes resulting from noncredit training. These recommendations provide the framework for an analysis of current VCCS programming

    A global charter for the public\u27s health - The public\u27s health: the role, functions, competencies, education

    Get PDF
    Political leaders increasingly perceive health as being crucial to achieving growth, development, equity and stability throughout the world. Health is now understood as a product of complex and dynamic relations generated by numerous determinants at different levels of governance. Governments need to take into account the impact of social, environmental and behavioural health determinants, including economic constraints, living conditions, demographic changes and unhealthy lifestyles in many of the World Health Organization (WHO) Member States. This understanding and increasing globalization means it is very timely to review the role of (global) public health in this changing societal and political environment

    Identifying the cellular targets of drug action in the central nervous system following corticosteroid therapy

    Get PDF
    This document is the Accepted Manuscript version of a Published Work that appeared in final form in ACS Chemical Neuroscience, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://dx.doi.org/10.1021/cn400167nCorticosteroid (CS) therapy is used widely in the treatment of a range of pathologies, but can delay production of myelin, the insulating sheath around central nervous system nerve fibers. The cellular targets of CS action are not fully understood, that is, "direct" action on cells involved in myelin genesis [oligodendrocytes and their progenitors the oligodendrocyte precursor cells (OPCs)] versus "indirect" action on other neural cells. We evaluated the effects of the widely used CS dexamethasone (DEX) on purified OPCs and oligodendrocytes, employing complementary histological and transcriptional analyses. Histological assessments showed no DEX effects on OPC proliferation or oligodendrocyte genesis/maturation (key processes underpinning myelin genesis). Immunostaining and RT-PCR analyses show that both cell types express glucocorticoid receptor (GR; the target for DEX action), ruling out receptor expression as a causal factor in the lack of DEX-responsiveness. GRs function as ligand-activated transcription factors, so we simultaneously analyzed DEX-induced transcriptional responses using microarray analyses; these substantiated the histological findings, with limited gene expression changes in DEX-treated OPCs and oligodendrocytes. With identical treatment, microglial cells showed profound and global changes post-DEX addition; an unexpected finding was the identification of the transcription factor Olig1, a master regulator of myelination, as a DEX responsive gene in microglia. Our data indicate that CS-induced myelination delays are unlikely to be due to direct drug action on OPCs or oligodendrocytes, and may occur secondary to alterations in other neural cells, such as the immune component. To the best of our knowledge, this is the first comparative molecular and cellular analysis of CS effects in glial cells, to investigate the targets of this major class of anti-inflammatory drugs as a basis for myelination deficits.British Neuro-pathological Society, North Staffordshire Medical Institute, and The University of Nottingham

    Characterization of mouse orofacial pain and the effects of lesioning TRPV1-expressing neurons on operant behavior

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Rodent models of orofacial pain typically use methods adapted from manipulations to hind paw; however, limitations of these models include animal restraint and subjective assessments of behavior by the experimenter. In contrast to these methods, assessment of operant responses to painful stimuli has been shown to overcome these limitations and expand the breadth of interpretation of the behavioral responses. In the current study, we used an operant model based on a reward-conflict paradigm to assess nociceptive responses in three strains of mice (SKH1-Hr<sup>hr</sup>, C57BL/6J, TRPV1 knockout). We previously validated this operant model in rats and hypothesized in this study that wild-type mice would demonstrate a similar thermal stimulus-dependent response and similar operant pain behaviors. Additionally, we evaluated the effects on operant behaviors of mice manipulated genetically (e.g., TRPV1 k.o.) or pharmacologically with resiniferatoxin (RTX), a lesioning agent for TRPV1-expressing neurons. During the reward-conflict task, mice accessed a sweetened milk reward solution by voluntarily position their face against a neutral or heated thermode (37–55°C).</p> <p>Results</p> <p>As the temperature of the thermal stimulus became noxiously hot, reward licking events in SKH1-Hr<sup>hr </sup>and C57BL/6J mice declined while licking events in TRPV1 k.o. mice were insensitive to noxious heat within the activation range of TRPV1 (37–52°C). All three strains displayed nocifensive behaviors at 55°C, as indicated by a significant decrease in reward licking events. Induction of neurogenic inflammation by topical application of capsaicin reduced licking events in SKH1-Hr<sup>hr </sup>mice, and morphine rescued this response. Again, these results parallel what we previously documented using rats in this operant system. Following intracisternal treatment with RTX, C57BL/6J mice demonstrated a block of noxious heat at both 48 and 55°C. RTX-treated TRPV1 k.o. mice and all vehicle-treated mice displayed similar reward licking events as compared to the pre-treatment baseline levels. Both TRPV1 k.o. and RTX-treated C57BL/6J had complete abolishment of eye-wipe responses following corneal application of capsaicin.</p> <p>Conclusion</p> <p>Taken together, these results indicate the benefits of using the operant test system to investigate pain sensitivity in mice. This ability provides an essential step in the development of new treatments for patients suffering from orofacial pain disorders.</p

    Peptidylarginine Deiminase 3 (PAD3) Is Upregulated by Prolactin Stimulation of CID-9 Cells and Expressed in the Lactating Mouse Mammary Gland

    Get PDF
    Peptidylarginine deiminases (PADs) post-translationally convert arginine into neutral citrulline residues. Our past work shows that PADs are expressed in the canine and murine mammary glands; however, the mechanisms regulating PAD expression and the function of citrullination in the normal mammary gland are unclear. Therefore, the first objective herein was to investigate regulation of PAD expression in mammary epithelial cells. We first examined PAD levels in CID-9 cells, which were derived from the mammary gland of mid-pregnant mice. PAD3 expression is significantly higher than all other PAD isoforms and mediates protein citrullination in CID-9 cells. We next hypothesized that prolactin regulates PAD3 expression. To test this, CID-9 cells were stimulated with 5 mug/mL of prolactin for 48 hours which significantly increases PAD3 mRNA and protein expression. Use of a JAK2 inhibitor and a dominant negative (DN)-STAT5 adenovirus indicate that prolactin stimulation of PAD3 expression is mediated by the JAK2/STAT5 signaling pathway in CID-9 cells. In addition, the human PAD3 gene promoter is prolactin responsive in CID-9 cells. Our second objective was to investigate the expression and activity of PAD3 in the lactating mouse mammary gland. PAD3 expression in the mammary gland is highest on lactation day 9 and coincident with citrullinated proteins such as histones. Use of the PAD3 specific inhibitor, Cl4-amidine, indicates that PAD3, in part, can citrullinate proteins in L9 mammary glands. Collectively, our results show that upregulation of PAD3 is mediated by prolactin induction of the JAK2/STAT5 signaling pathway, and that PAD3 appears to citrullinate proteins during lactation

    Deep CCD Surface Photometry of the Edge-On Spiral NGC 4244

    Full text link
    We have obtained deep surface photometry of the edge-on spiral galaxy NGC 4244. Our data reliably reach 27.5 R magnitude arcsec^{-2}, a significant improvement on our earlier deep CCD surface photometry of other galaxies. NGC 4244 is a nearby Scd galaxy whose total luminosity is approximately one magnitude fainter than the peak of the Sc luminosity function. We find that it has a simple structure: a single exponential disk, with a scale height h_Z = 246 +/- 2 pc, a scale length h_R = 1.84 +/- 0.02 kpc and a disk cutoff at a radius R(max) = 10.0 kpc (5.4 scale lengths). We confirm a strong cutoff in the stellar disk at R(max), which happens over only 1 kpc. We do not see any statistically significant evidence for disk flaring with radius. Unlike the more luminous Sc galaxies NGC 5907 and M 33, NGC 4244 does not show any evidence for a second component, such as a thick disk or halo, at mu(R) < 27.5 magnitude arcsec^{-2}.Comment: 36 pages, including 12 figures; accepted for publication in Sept 99 A
    corecore