7 research outputs found

    The Human Endogenous Circadian System Causes Greatest Platelet Activation during the Biological Morning Independent of Behaviors

    Get PDF
    Platelets are involved in the thromboses that are central to myocardial infarctions and ischemic strokes. Such adverse cardiovascular events have day/night patterns with peaks in the morning (~9 AM), potentially related to endogenous circadian clock control of platelet activation. The objective was to test if the human endogenous circadian system influences (1) platelet function and (2) platelet response to standardized behavioral stressors. We also aimed to compare the magnitude of any effects on platelet function caused by the circadian system with that caused by varied standardized behavioral stressors, including mental arithmetic, passive postural tilt and mild cycling exercise.We studied 12 healthy adults (6 female) who lived in individual laboratory suites in dim light for 240 h, with all behaviors scheduled on a 20-h recurring cycle to permit assessment of endogenous circadian function independent from environmental and behavioral effects including the sleep/wake cycle. Circadian phase was assessed from core body temperature. There were highly significant endogenous circadian rhythms in platelet surface activated glycoprotein (GP) IIb-IIIa, GPIb and P-selectin (6-17% peak-trough amplitudes; p ≤ 0.01). These circadian peaks occurred at a circadian phase corresponding to 8-9 AM. Platelet count, ATP release, aggregability, and plasma epinephrine also had significant circadian rhythms but with later peaks (corresponding to 3-8 PM). The circadian effects on the platelet activation markers were always larger than that of any of the three behavioral stressors.These data demonstrate robust effects of the endogenous circadian system on platelet activation in humans--independent of the sleep/wake cycle, other behavioral influences and the environment. The 9 AM timing of the circadian peaks of the three platelet surface markers, including platelet surface activated GPIIb-IIIa, the final common pathway of platelet aggregation, suggests that endogenous circadian influences on platelet function could contribute to the morning peak in adverse cardiovascular events as seen in many epidemiological studies

    The endogenous circadian system worsens asthma at night independent of sleep and other daily behavioral or environmental cycles.

    No full text
    Asthma often worsens at night. To determine if the endogenous circadian system contributes to the nocturnal worsening of asthma, independent of sleep and other behavioral and environmental day/night cycles, we studied patients with asthma (without steroid use) over 3 wk in an ambulatory setting (with combined circadian, environmental, and behavioral effects) and across the circadian cycle in two complementary laboratory protocols performed in dim light, which separated circadian from environmental and behavioral effects: 1) a 38-h "constant routine," with continuous wakefulness, constant posture, 2-hourly isocaloric snacks, and 2) a 196-h "forced desynchrony" incorporating seven identical recurring 28-h sleep/wake cycles with all behaviors evenly scheduled across the circadian cycle. Indices of pulmonary function varied across the day in the ambulatory setting, and both laboratory protocols revealed significant circadian rhythms, with lowest function during the biological night, around 4:00 AM, uncovering a nocturnal exacerbation of asthma usually unnoticed or hidden by the presence of sleep. We also discovered a circadian rhythm in symptom-based rescue bronchodilator use (β2-adrenergic agonist inhaler) whereby inhaler use was four times more likely during the circadian night than day. There were additive influences on asthma from the circadian system plus sleep and other behavioral or environmental effects. Individuals with the lowest average pulmonary function tended to have the largest daily circadian variations and the largest behavioral cycle effects on asthma. When sleep was modeled to occur at night, the summed circadian, behavioral/environmental cycle effects almost perfectly matched the ambulatory data. Thus, the circadian system contributes to the common nocturnal worsening of asthma, implying that internal biological time should be considered for optimal therapy

    Independent influence of behavioral stressors on platelet function.

    No full text
    <p>WBA, platelet count, and plasma epinephrine were increased by each of the three stressors, with a (partial) recovery during recovery. In contrast, while the platelet surface markers showed a gradual increase across the approximately 3-h test battery, there was no consistent increase and recovery caused by the three stressors. Mental, mental stress test; tilt, passive head up tilt table test; exercise, cycle exercise test; B, baseline; S, stress test; R, recovery; x-axes, minutes from first blood sample within test battery; left y-axes, absolute values; right y-axes, data expressed as a percentage of each individual’s mean values across the forced desynchrony protocol; error bars, SEM; P-values, significance for effect of time across full stress test battery (9 time points); *, significance for change between consecutive samples (from baseline to stress test and from stress test to recovery). Note platelet ATP release is not shown (see above text).</p

    Protocol.

    No full text
    <p>Rasterplot, including two baseline days, twelve 20-h cycles, and discharge day of an example subject with a habitual bedtime of midnight. Blue bars, baseline and discharge wake episodes in normal room light (∼90 lux); solid back bars, scheduled sleep (0 lux); gray bars, wake episodes in dim light (∼1.8 lux); red bars, timing of the test batteries; dotted line illustrates the circadian core body temperature minimum throughout the protocol, with an average circadian period of 24.09h in these subjects. Each test battery consisted of a mental, tilt, and exercise stress (S) test, each preceded and followed by a baseline (B) and recovery (R) episode. The timing of the blood draws is indicated as red filled circles.</p
    corecore