21,413 research outputs found

    Rehybridization of electronic structure in compressed two-dimensional quantum dot superlattices

    Get PDF
    Two-dimensional superlattices of organically passivated 2.6-nm silver quantum dots were prepared as Langmuir monolayers and transferred to highly oriented pyrolytic graphite substrates. The structural and electronic properties of the films were probed with variable temperature scanning tunneling microscopy. Particles passivated with decanethiol (interparticle separation distance of ∼1.1±0.2 nm) exhibited Coulomb blockade and staircase. For particles passivated with hexanethiol or pentanethiol (interparticle separation distance of ∼0.5±0.2 nm), the single-electron charging was quenched, and the redistribution of the density of states revealed that strong quantum mechanical exchange, i.e., wave-function hybridization, existed among the particles in these films

    Germanium quantum dots: Optical properties and synthesis

    Get PDF
    Three different size distributions of Ge quantum dots (>~200, 110, and 60 Å) have been synthesized via the ultrasonic mediated reduction of mixtures of chlorogermanes and organochlorogermanes (or organochlorosilanes) by a colloidal sodium/potassium alloy in heptane, followed by annealing in a sealed pressure vessel at 270 °C. The quantum dots are characterized by transmission electron microscopy, x-ray powder diffraction, x-ray photoemission, infrared spectroscopy, and Raman spectroscopy. Colloidal suspensions of these quantum dots were prepared and their extinction spectra are measured with ultraviolet/visible (UV/Vis) and near infrared (IR) spectroscopy, in the regime from 0.6 to 5 eV. The optical spectra are correlated with a Mie theory extinction calculation utilizing bulk optical constants. This leads to an assignment of three optical features to the E(1), E(0'), and E(2) direct band gap transitions. The E(0') transitions exhibit a strong size dependence. The near IR spectra of the largest dots is dominated by E(0) direct gap absorptions. For the smallest dots the near IR spectrum is dominated by the Gamma25-->L indirect transitions

    The geometric properties of an expandable whirling-membrane solar-energy concentrator

    Get PDF
    Geometric properties of expandable whirling membrane solar energy concentrator used in conjunction with electrical conversion systems for spacecraft auxiliary power unit

    Nanocrystal seeding: A low temperature route to polycrystalline Si films

    Get PDF
    A novel method is presented for growth of polycrystalline silicon films on amorphous substrates at temperatures of 540–575 °C. Grain nucleation and grain growth are performed in two steps, using Si nanocrystals as nuclei ("seeds"). The nanocrystal seeds are produced by excimer laser photolysis of disilane in a room temperature flow cell. Film (grain) growth occurs epitaxially on the seeds in a separate thermal chemical vapor deposition (CVD) step, with growth rates 10–100 times higher than similar CVD growth rates on crystal Si. Grain size and CVD growth rates are dependent on seed coverage, for seed coverage <0.2 monolayers

    Permutation groups, simple groups and sieve methods

    Get PDF
    We show that the number of integers n ≤ x which occur as indices of subgroups of nonabelian finite simple groups, excluding that of An-1 in An, is ∼ hx/log x, for some given constant h. This might be regarded as a noncommutative analogue of the Prime Number Theorem (which counts indices n ≤ x of subgroups of abelian simple groups). We conclude that for most positive integers n, the only quasiprimitive permutation groups of degree n are Sn and An in their natural action. This extends a similar result for primitive permutation groups obtained by Cameron, Neumann and Teague in 1982. Our proof combines group-theoretic and number-theoretic methods. In particular, we use the classification of finite simple groups, and we also apply sieve methods to estimate the size of some interesting sets of primes

    Bats of Hot Springs National Park, Arkansas

    Get PDF
    A survey was conducted from June 1982 through January 1987 to determine the occurrence of bat species in Hot Springs National Park, Garland County, Arkansas; an area of approximately 2025 hectares. A total of 309 bats in the families Molossidae and Vespertilionidae were captured. Species represented included: Eptesicus fuscus, Lasiurus borealis, Lasiurus cinereus, Nycticeius humeralis, Pipistrellus subflavus, and Tadarida brasiliensis cynocephala

    Complementary Symmetry Nanowire Logic Circuits: Experimental Demonstrations and in Silico Optimizations

    Get PDF
    Complementary symmetry (CS) Boolean logic utilizes both p- and n-type field-effect transistors (FETs) so that an input logic voltage signal will turn one or more p- or n-type FETs on, while turning an equal number of n- or p-type FETs off. The voltage powering the circuit is prevented from having a direct pathway to ground, making the circuit energy efficient. CS circuits are thus attractive for nanowire logic, although they are challenging to implement. CS logic requires a relatively large number of FETs per logic gate, the output logic levels must be fully restored to the input logic voltage level, and the logic gates must exhibit high gain and robust noise margins. We report on CS logic circuits constructed from arrays of 16 nm wide silicon nanowires. Gates up to a complexity of an XOR gate (6 p-FETs and 6 n-FETs) containing multiple nanowires per transistor exhibit signal restoration and can drive other logic gates, implying that large scale logic can be implemented using nanowires. In silico modeling of CS inverters, using experimentally derived look-up tables of individual FET properties, is utilized to provide feedback for optimizing the device fabrication process. Based upon this feedback, CS inverters with a gain approaching 50 and robust noise margins are demonstrated. Single nanowire-based logic gates are also demonstrated, but are found to exhibit significant device-to-device fluctuations

    Receiver-Based Auralization of Broadband Aircraft Flyover Noise Using the NASA Auralization Framework

    Get PDF
    The NASA Auralization Framework (NAF) consists of a set of dynamic link libraries (DLLs) to facilitate auralization of aircraft noise. Advanced capabilities for synthesis, propagation, and external interfaces are provided by the NAF Advanced Plugin Libraries (APL); a separate set of DLLs that are made accessible through the NAFs plugin architecture. In the typical time domain use case, the sound is first synthesized at the source location based on a source noise definition, and is then propagated in the time domain to a receiver on or near the ground. Alternatively, it may be desirable to synthesize the sound at the receiver, after it has been propagated in the frequency domain, e.g., when the source definition is inaccessible or when alternative propagation methods are needed. Receiver-based auralization requires three new developments in the NAF APL: a component plugin to interpolate the propagated noise spectra as a function of time for input to sound synthesis, and a path finder and path traversal plugin to calculate the effects of the differential propagation path length between the direct and ground reflected rays. This paper describes those developments and demonstrates their use in the auralization of broadband flyover noise
    corecore