2,343 research outputs found

    Phenology Effects on Productivity and Hatching-Asynchrony of American Kestrels (\u3cem\u3eFalco sparverius\u3c/em\u3e) Across a Continent

    Get PDF
    Optimal reproductive performance occurs when birds time reproduction to coincide with peak food availability. Deviation from optimal timing, or mismatch, can affect productivity, though birds may mediate some mismatch effects by altering their incubation behavior. We studied the consequences of nesting timing (i.e., clutch initiation relative to an index of spring start) on productivity across the breeding range of American kestrels (Falco sparverius) in the United States and southern Canada, and associations between nesting timing, incubation behavior, and hatching asynchrony. We used observations from long-term nest box monitoring, remote trail cameras, and community-scientist-based programs to obtain data on clutch initiation, productivity, incubation, and hatching synchrony. Kestrels that initiated clutches after the extended spring index (SI-x, start of spring estimate) had higher rates of nest failure and fewer nestlings than earlier nesters, and effects of nesting timing on productivity were strongest in the Northeast. In contrast, kestrels in the Southwest experienced a more gradual decline in productivity across the season. Spatial effects may be the result of regional differences in growing seasons and temporal nesting windows (duration of nesting season). Specifically, resource availability in the Northeast was highly peaked during the breeding season, potentially resulting in shorter nesting windows. Conversely, resource curves were more prolonged in the Southwest, and growing seasons are becoming longer with climate change, potentially resulting in longer nesting windows. We found an inverse relationship between nesting timing and the onset of male incubation. Males from breeding pairs that initiated clutches after SI-x began incubation sooner than males from breeding pairs that initiated clutches before SI-x. Early-onset of male incubation was positively associated with hatching asynchrony, creating increased age variation in developing young. In sum, nesting phenology relative to the SI-x has consequences for American kestrels’ productivity, and these consequences vary across space. The early onset of incubation may act as a potential adaptive behavior to advance the average hatch date and spread out energetic demands. Given the effects of nesting timing on productivity, kestrels are likely to be sensitive to climate-driven advances in growing seasons and vulnerable to phenological mismatch, particularly in the Northeast

    Hsp70 and Hsp40 inhibit an inter-domain interaction necessary for transcriptional activity in the androgen receptor.

    Get PDF
    Molecular chaperones such as Hsp40 and Hsp70 hold the androgen receptor (AR) in an inactive conformation. They are released in the presence of androgens, enabling transactivation and causing the receptor to become aggregation-prone. Here we show that these molecular chaperones recognize a region of the AR N-terminal domain (NTD), including a FQNLF motif, that interacts with the AR ligand-binding domain (LBD) upon activation. This suggests that competition between molecular chaperones and the LBD for the FQNLF motif regulates AR activation. We also show that, while the free NTD oligomerizes, binding to Hsp70 increases its solubility. Stabilizing the NTD-Hsp70 interaction with small molecules reduces AR aggregation and promotes its degradation in cellular and mouse models of the neuromuscular disorder spinal bulbar muscular atrophy. These results help resolve the mechanisms by which molecular chaperones regulate the balance between AR aggregation, activation and quality control

    Petrologic and petrophysical evaluation of the Dallas Center Structure, Iowa, for compressed air energy storage in the Mount Simon Sandstone.

    Full text link
    The Iowa Stored Energy Plant Agency selected a geologic structure at Dallas Center, Iowa, for evaluation of subsurface compressed air energy storage. The site was rejected due to lower-than-expected and heterogeneous permeability of the target reservoir, lower-than-desired porosity, and small reservoir volume. In an initial feasibility study, permeability and porosity distributions of flow units for the nearby Redfield gas storage field were applied as analogue values for numerical modeling of the Dallas Center Structure. These reservoir data, coupled with an optimistic reservoir volume, produced favorable results. However, it was determined that the Dallas Center Structure cannot be simplified to four zones of high, uniform permeabilities. Updated modeling using field and core data for the site provided unfavorable results for air fill-up. This report presents Sandia National Laboratories' petrologic and petrophysical analysis of the Dallas Center Structure that aids in understanding why the site was not suitable for gas storage

    F-actin bundles direct the initiation and orientation of lamellipodia through adhesion-based signaling

    Get PDF
    During cell migration, F-actin bundles/filopodia serve as templates for formation and orientation of lamellipodia and prime their stabilization by adhesion-based PI3K signaling.Mesenchymal cells such as fibroblasts are weakly polarized and reorient directionality by a lamellipodial branching mechanism that is stabilized by phosphoinositide 3-kinase (PI3K) signaling. However, the mechanisms by which new lamellipodia are initiated and directed are unknown. Using total internal reflection fluorescence microscopy to monitor cytoskeletal and signaling dynamics in migrating cells, we show that peripheral F-actin bundles/filopodia containing fascin-1 serve as templates for formation and orientation of lamellipodia. Accordingly, modulation of fascin-1 expression tunes cell shape, quantified as the number of morphological extensions. Ratiometric imaging reveals that F-actin bundles/filopodia play both structural and signaling roles, as they prime the activation of PI3K signaling mediated by integrins and focal adhesion kinase. Depletion of fascin-1 ablated fibroblast haptotaxis on fibronectin but not platelet-derived growth factor chemotaxis. Based on these findings, we conceptualize haptotactic sensing as an exploration, with F-actin bundles directing and lamellipodia propagating the process and with signaling mediated by adhesions playing the role of integrator

    GMF controls branched actin content and lamellipodial retraction in fibroblasts

    Get PDF
    The lamellipodium is an important structure for cell migration containing branched actin nucleated via the Arp2/3 complex. The formation of branched actin is relatively well studied, but less is known about its disassembly and how this influences migration. GMF is implicated in both Arp2/3 debranching and inhibition of Arp2/3 activation. Modulation of GMFβ, a ubiquitous GMF isoform, by depletion or overexpression resulted in changes in lamellipodial dynamics, branched actin content, and migration. Acute pharmacological inhibition of Arp2/3 by CK-666, coupled to quantitative live-cell imaging of the complex, showed that depletion of GMFβ decreased the rate of branched actin disassembly. These data, along with mutagenesis studies, suggest that debranching (not inhibition of Arp2/3 activation) is a primary activity of GMFβ in vivo. Furthermore, depletion or overexpression of GMFβ disrupted the ability of cells to directionally migrate to a gradient of fibronectin (haptotaxis). These data suggest that debranching by GMFβ plays an important role in branched actin regulation, lamellipodial dynamics, and directional migration

    Monte Carlo and analytic modeling of an Elekta Infinity linac with Agility MLC: Investigating the significance of accurate model parameters for small radiation fields

    Get PDF
    Purpose: To explain the deviation observed between measured and Monaco calculated dose profiles for a small field (i.e., alternating open-closed MLC pattern). A Monte Carlo (MC) model of an Elekta Infinity linac with Agility MLC was created and validated against measurements. In addition, an analytic model which predicts the fluence at the isocenter plane was used to study the impact of multiple beam parameters on the accuracy of dose calculations for small fields. Methods: A detailed MC model of a 6 MV Elekta Infinity linac with Agility MLC was created in EGSnrc/BEAMnrc and validated against measurements. An analytic model using primary and secondary virtual photon sources was created and benchmarked against the MC simulations and the impact of multiple beam parameters on the accuracy of the model for a small field was investigated. Both models were used to explain discrepancies observed between measured/EGSnrc simulated and Monaco calculated dose profiles for alternating open-closed MLC leaves. Results: MC-simulated dose profiles (PDDs, cross- and in-line profiles, etc.) were found to be in very good agreements with measurements. The bes

    In Vivo Gene Essentiality and Metabolism in Bordetella pertussis

    Get PDF
    Bordetella pertussis is the causative agent of whooping cough, a serious respiratory illness affecting children and adults, associated with prolonged cough and potential mortality. Whooping cough has reemerged in recent years, emphasizing a need for increased knowledge of basic mechanisms of B. pertussis growth and pathogenicity. While previous studies have provided insight into in vitro gene essentiality of this organism, very little is known about in vivo gene essentiality, a critical gap in knowledge, since B. pertussis has no previously identified environmental reservoir and is isolated from human respiratory tract samples. We hypothesize that the metabolic capabilities of B. pertussis are especially tailored to the respiratory tract and that many of the genes involved in B. pertussis metabolism would be required to establish infection in vivo. In this study, we generated a diverse library of transposon mutants and then used it to probe gene essentiality in vivo in a murine model of infection. Using the CON-ARTIST pipeline, 117 genes were identified as conditionally essential at 1 day postinfection, and 169 genes were identified as conditionally essential at 3 days postinfection. Most of the identified genes were associated with metabolism, and we utilized two existing genome-scale metabolic network reconstructions to probe the effects of individual essential genes on biomass synthesis. This analysis suggested a critical role for glucose metabolism and lipooligosaccharide biosynthesis in vivo. This is the first genome-wide evaluation of in vivo gene essentiality in B. pertussis and provides tools for future exploration. IMPORTANCE Our study describes the first in vivo transposon sequencing (Tn-seq) analysis of B. pertussis and identifies genes predicted to be essential for in vivo growth in a murine model of intranasal infection, generating key resources for future investigations into B. pertussis pathogenesis and vaccine design

    Lamellipodia are crucial for haptotactic sensing and response

    Get PDF
    Haptotaxis is the process by which cells respond to gradients of substrate-bound cues, such as extracellular matrix proteins (ECM); however, the cellular mechanism of this response remains poorly understood and has mainly been studied by comparing cell behavior on uniform ECMs with different concentrations of components. To study haptotaxis in response to gradients, we utilized microfluidic chambers to generate gradients of the ECM protein fibronectin, and imaged the cell migration response. Lamellipodia are fan-shaped protrusions that are common in migrating cells. Here, we define a new function for lamellipodia and the cellular mechanism required for haptotaxis – differential actin and lamellipodial protrusion dynamics lead to biased cell migration. Modest differences in lamellipodial dynamics occurring over time periods of seconds to minutes are summed over hours to produce differential whole cell movement towards higher concentrations of fibronectin. We identify a specific subset of lamellipodia regulators as being crucial for haptotaxis. Numerous studies have linked components of this pathway to cancer metastasis and, consistent with this, we find that expression of the oncogenic Rac1 P29S mutation abrogates haptotaxis. Finally, we show that haptotaxis also operates through this pathway in 3D environments

    Mesenchymal Chemotaxis Requires Selective Inactivation of Myosin II at the Leading Edge via a Noncanonical PLCγ/PKCα Pathway

    Get PDF
    Chemotaxis, migration towards soluble chemical cues, is critical for processes such as wound healing and immune surveillance, and is exhibited by various cell types from rapidly-migrating leukocytes to slow-moving mesenchymal cells. To interrogate the mechanisms involved in mesenchymal chemotaxis, we observed cell migration in microfluidic chambers that generate stable gradients of the chemoattractant PDGF. Surprisingly, we found that pathways implicated in amoeboid chemotaxis, such as PI3K and mTOR signaling, are dispensable for chemotaxis to PDGF. Instead, we find that local inactivation of Myosin IIA, through a non-canonical Ser1/2 phosphorylation of the regulatory light chain, is essential. This site is phosphorylated by PKCα, which is activated by an intracellular gradient of diacylglycerol generated by PLCγ. Using a combination of TIRF imaging and gradients of activators/inhibitors in the microfluidic chambers, we demonstrate that this signaling pathway and subsequent inhibition of Myosin II activity at the leading edge is required for mesenchymal chemotaxis
    corecore