18 research outputs found

    Neural correlates of maintenance working memory, as well as relevant structural qualities, are associated with earlier antiretroviral treatment initiation in vertically transmitted HIV.

    Get PDF
    There is evidence of HIV affecting cognitive functioning across age groups, with adult studies showing related deficits in frontostriatal and hippocampal regional activity. Additionally, delayed initiation of antiretroviral treatment (ART) has been associated with poorer cognitive outcomes in HIV-infected youth. Little is known, however, of the neural correlates underlying such cognitive deficits in youth populations. We investigated maintenance working memory-related brain activity in South African HIV-infected youth and controls, and the effect of ART initiation age on underlying structures. Sixty-four perinatally infected youth (ages 9-12) and 20 controls (ages 9-13) underwent functional magnetic resonance imaging (fMRI) while completing 1-back and 0-back blocks of the N-back task. At an uncorrected p value threshold of 0.001, the HIV-infected group showed decreased activation in the left superior temporal gyrus, pre- and postcentral gyri, insula, and putamen as well as bilateral hippocampus, and mid cingulum. The HIV patients with delayed ART initiation showed less activation during processing conditions in the mid cingulum; left inferior parietal gyrus; and right inferior frontal, bilateral thalamic, and superior temporal regions. When these regions were tested for structural differences, the mid cingulum and right inferior frontal gyrus, insula, and thalamus were found to have less cortical thickness, surface area, or volume in the group with delayed ART initiation. Regional differences between HIV-infected youth and controls noted in the N-back task are consistent with impairments in structures involved in maintenance working memory. These data support earlier ART initiation in perinatally infected individuals

    A quantitative and qualitative review of the effects of testosterone on the function and structure of the human social-emotional brain

    No full text
    Social and affective research in humans is increasingly using functional and structural neuroimaging techniques to aid the understanding of how hormones, such as testosterone, modulate a wide range of psychological processes. We conducted a meta-analysis of functional magnetic resonance imaging (fMRI) studies of testosterone administration, and of fMRI studies that measured endogenous levels of the hormone, in relation to social and affective stimuli. Furthermore, we conducted a review of structural MRI i.e. voxel based morphometry (VBM) studies which considered brain volume in relation to testosterone levels in adults and in children. In the included testosterone administration fMRI studies, which consisted of female samples only, bilateral amygdala/parahippocampal regions as well as the right caudate were significantly activated by social-affective stimuli in the testosterone condition. In the studies considering endogenous levels of testosterone, stimuli-invoked activations relating to testosterone levels were noted in the bilateral amygdala/parahippocampal regions and the brainstem. When the endogenous testosterone studies were split by sex, the significant activation of the brain stem was seen in the female samples only. Significant stimuli-invoked deactivations relating to endogenous testosterone levels were also seen in the right and left amygdala/parahippocampal regions studies. The findings of the VBM studies were less consistent. In adults larger volumes in the limbic and temporal regions were associated with higher endogenous testosterone. In children, boys showed a positive correlation between testosterone and brain volume in many regions, including the amygdala, as well as global grey matter volume, while girls showed a neutral or negative association between testosterone levels and many brain volumes. In conclusion, amygdalar and parahippocampal regions appear to be key target regions for the acute actions of testosterone in response to social and affective stimuli, while neurodevelopmentally the volumes of a broader network of brain structures are associated with testosterone levels in a sexually dimorphic manner

    A quantitative and qualitative review of the effects of testosterone on the function and structure of the human social-emotional brain

    Get PDF
    Social and affective research in humans is increasingly using functional and structural neuroimaging techniques to aid the understanding of how hormones, such as testosterone, modulate a wide range of psychological processes. We conducted a meta-analysis of functional magnetic resonance imaging (fMRI) studies of testosterone administration, and of fMRI studies that measured endogenous levels of the hormone, in relation to social and affective stimuli. Furthermore, we conducted a review of structural MRI i.e. voxel based morphometry (VBM) studies which considered brain volume in relation to testosterone levels in adults and in children. In the included testosterone administration fMRI studies, which consisted of female samples only, bilateral amygdala/parahippocampal regions as well as the right caudate were significantly activated by social-affective stimuli in the testosterone condition. In the studies considering endogenous levels of testosterone, stimuli-invoked activations relating to testosterone levels were noted in the bilateral amygdala/parahippocampal regions and the brainstem. When the endogenous testosterone studies were split by sex, the significant activation of the brain stem was seen in the female samples only. Significant stimuli-invoked deactivations relating to endogenous testosterone levels were also seen in the right and left amygdala/parahippocampal regions studies. The findings of the VBM studies were less consistent. In adults larger volumes in the limbic and temporal regions were associated with higher endogenous testosterone. In children, boys showed a positive correlation between testosterone and brain volume in many regions, including the amygdala, as well as global grey matter volume, while girls showed a neutral or negative association between testosterone levels and many brain volumes. In conclusion, amygdalar and parahippocampal regions appear to be key target regions for the acute actions of testosterone in response to social and affective stimuli, while neurodevelopmentally the volumes of a broader network of brain structures are associated with testosterone levels in a sexually dimorphic manner

    Neuroendocrine models of social anxiety disorder

    No full text
    Social anxiety disorder (SAD) is a highly prevalent and disabling disorder with key behavioral traits of social fearfulness, social avoidance, and submissiveness. Here we argue that hormonal systems play a key role in mediating social anxiety, and so may be important in SAD. Hormonal alterations, often established early in development through the interaction between biological and psychological factors (eg, genetic predisposition x early trauma), predispose to socially fearful, avoidant, and submissive behavior. However, whereas gene variants and histories of trauma persist, hormonal systems can be remodeled over the course of life. Hormones play a key role during the periods of all sensitive developmental windows (ie, prenatal, neonatal, puberty, aging), and are capable of opening up new developmental windows in adulthood. Indeed, the developmental plasticity of our social brain, and thus of social behavior in adulthood, critically depends on steroid hormones such as testosterone and peptide hormones such as oxytocin. These steroid and peptide hormones in interaction with social experiences may have potential for reprogramming the socially anxious brain. Certainly, single administrations of oxytocin and testosterone in humans reduce socially fearful, avoidant, and submissive behavior. Such work may ultimately lead to new approaches to the treatment of SAD

    Effects of testosterone administration on threat and escape anticipation in the orbitofrontal cortex

    No full text
    Recent evidence suggests that the steroid hormone testosterone can decrease the functional coupling between orbitofrontal cortex (OFC) and amygdala. Theoretically this decoupling has been linked to a testosterone-driven increase of goal-directed behaviour in case of threat, but this has never been studied directly. Therefore, we placed twenty-two women in dynamically changing situations of escapable and inescapable threat after a within-subject placebo controlled testosterone administration. Using functional magnetic resonance imaging (fMRI) we provide evidence that testosterone activates the left lateral OFC (LOFC) in preparation of active goal-directed escape and decouples this OFC area from a subcortical threat system including the central-medial amygdala, hypothalamus and periaqueductal gray. This LOFC decoupling was specific to threatening situations, a point that was further emphasized by an absence of such decoupling in a second experiment focused on resting-state connectivity. These results not only confirm that testosterone administration decouples the LOFC from the subcortical threat system, but also show that this is specifically the case in response to acute threat, and ultimately leads to an increase in LOFC activity when the participant prepares a goal-directed action to escape. Together these results for the first time provide a detailed understanding of functional brain alterations induced by testosterone under threat conditions, and corroborate and extend the view that testosterone prepares the brain for goal-directed action in case of threat

    Effects of testosterone administration on threat and escape anticipation in the orbitofrontal cortex

    No full text
    Recent evidence suggests that the steroid hormone testosterone can decrease the functional coupling between orbitofrontal cortex (OFC) and amygdala. Theoretically this decoupling has been linked to a testosterone-driven increase of goal-directed behaviour in case of threat, but this has never been studied directly. Therefore, we placed twenty-two women in dynamically changing situations of escapable and inescapable threat after a within-subject placebo controlled testosterone administration. Using functional magnetic resonance imaging (fMRI) we provide evidence that testosterone activates the left lateral OFC (LOFC) in preparation of active goal-directed escape and decouples this OFC area from a subcortical threat system including the central-medial amygdala, hypothalamus and periaqueductal gray. This LOFC decoupling was specific to threatening situations, a point that was further emphasized by an absence of such decoupling in a second experiment focused on resting-state connectivity. These results not only confirm that testosterone administration decouples the LOFC from the subcortical threat system, but also show that this is specifically the case in response to acute threat, and ultimately leads to an increase in LOFC activity when the participant prepares a goal-directed action to escape. Together these results for the first time provide a detailed understanding of functional brain alterations induced by testosterone under threat conditions, and corroborate and extend the view that testosterone prepares the brain for goal-directed action in case of threat

    Neuropsychopharmacology advance online publication

    No full text
    The South African endemic plant Sceletium tortuosum has a long history of traditional use as a masticatory and medicine by San and Khoikhoi people and subsequently by European colonial farmers as a psychotropic in tincture form. Over the past decade, the plant has attracted increasing attention for its possible applications in promoting a sense of wellbeing and relieving stress in healthy individuals and for treating clinical anxiety and depression. The pharmacological actions of a standardized extract of the plant (Zembrin) have been reported to be dual PDE4 inhibition and 5-HT reuptake inhibition, a combination that has been argued to offer potential therapeutic advantages. Here we tested the acute effects of Zembrin administration in a pharmaco-fMRI study focused on anxiety-related activity in the amygdala and its connected neurocircuitry. In a double-blind, placebo-controlled, cross-over design, 16 healthy participants were scanned during performance in a perceptual-load and an emotion-matching task. Amygdala reactivity to fearful faces under low perceptual load conditions was attenuated after a single 25 mg dose of Zembrin. Follow-up connectivity analysis on the emotionmatching task showed that amygdala-hypothalamus coupling was also reduced. These results demonstrate, for the first time, the attenuating effects of S. tortuosum on the threat circuitry of the human brain and provide supporting evidence that the dual 5-HT reuptake inhibition and PDE4 inhibition of this extract might have anxiolytic potential by attenuating subcortical threat responsivity
    corecore