1,196 research outputs found

    Foreword

    Get PDF

    Universality of low-energy scattering in (2+1) dimensions

    Get PDF
    We prove that, in (2+1) dimensions, the S-wave phase shift, δ0(k) \delta_0(k), k being the c.m. momentum, vanishes as either δ0cln(k/m)orδ0O(k2)\delta_0 \to {c\over \ln (k/m)} or \delta_0 \to O(k^2) as k0k\to 0. The constant cc is universal and c=π/2c=\pi/2. This result is established first in the framework of the Schr\"odinger equation for a large class of potentials, second for a massive field theory from proved analyticity and unitarity, and, finally, we look at perturbation theory in ϕ34\phi_3^4 and study its relation to our non-perturbative result. The remarkable fact here is that in n-th order the perturbative amplitude diverges like (lnk)n(\ln k)^n as k0k\to 0, while the full amplitude vanishes as (lnk)1(\ln k)^{-1}. We show how these two facts can be reconciled.Comment: 23 pages, Late

    Patterns in the Kardar-Parisi-Zhang equation

    Full text link
    We review a recent asymptotic weak noise approach to the Kardar-Parisi-Zhang equation for the kinetic growth of an interface in higher dimensions. The weak noise approach provides a many body picture of a growing interface in terms of a network of localized growth modes. Scaling in 1d is associated with a gapless domain wall mode. The method also provides an independent argument for the existence of an upper critical dimension.Comment: 8 pages revtex, 4 eps figure

    Solitons in the noisy Burgers equation

    Full text link
    We investigate numerically the coupled diffusion-advective type field equations originating from the canonical phase space approach to the noisy Burgers equation or the equivalent Kardar-Parisi-Zhang equation in one spatial dimension. The equations support stable right hand and left hand solitons and in the low viscosity limit a long-lived soliton pair excitation. We find that two identical pair excitations scatter transparently subject to a size dependent phase shift and that identical solitons scatter on a static soliton transparently without a phase shift. The soliton pair excitation and the scattering configurations are interpreted in terms of growing step and nucleation events in the interface growth profile. In the asymmetrical case the soliton scattering modes are unstable presumably toward multi soliton production and extended diffusive modes, signalling the general non-integrability of the coupled field equations. Finally, we have shown that growing steps perform anomalous random walk with dynamic exponent z=3/2 and that the nucleation of a tip is stochastically suppressed with respect to plateau formation.Comment: 11 pages Revtex file, including 15 postscript-figure

    Canonical phase space approach to the noisy Burgers equation

    Full text link
    Presenting a general phase approach to stochastic processes we analyze in particular the Fokker-Planck equation for the noisy Burgers equation and discuss the time dependent and stationary probability distributions. In one dimension we derive the long-time skew distribution approaching the symmetric stationary Gaussian distribution. In the short time regime we discuss heuristically the nonlinear soliton contributions and derive an expression for the distribution in accordance with the directed polymer-replica model and asymmetric exclusion model results.Comment: 4 pages, Revtex file, submitted to Phys. Rev. Lett. a reference has been added and a few typos correcte

    On Critical Exponents and the Renormalization of the Coupling Constant in Growth Models with Surface Diffusion

    Full text link
    It is shown by the method of renormalized field theory that in contrast to a statement based on a mathematically ill-defined invariance transformation and found in most of the recent publications on growth models with surface diffusion, the coupling constant of these models renormalizes nontrivially. This implies that the widely accepted supposedly exact scaling exponents are to be corrected. A two-loop calculation shows that the corrections are small and these exponents seem to be very good approximations.Comment: 4 pages, revtex, 2 postscript figures, to appear in Phys.Rev.Let

    Recent results on multiplicative noise

    Full text link
    Recent developments in the analysis of Langevin equations with multiplicative noise (MN) are reported. In particular, we: (i) present numerical simulations in three dimensions showing that the MN equation exhibits, like the Kardar-Parisi-Zhang (KPZ) equation both a weak coupling fixed point and a strong coupling phase, supporting the proposed relation between MN and KPZ; (ii) present dimensional, and mean field analysis of the MN equation to compute critical exponents; (iii) show that the phenomenon of the noise induced ordering transition associated with the MN equation appears only in the Stratonovich representation and not in the Ito one, and (iv) report the presence of a new first-order like phase transition at zero spatial coupling, supporting the fact that this is the minimum model for noise induced ordering transitions.Comment: Some improvements respect to the first versio

    Solitons and diffusive modes in the noiseless Burgers equation: Stability analysis

    Full text link
    The noiseless Burgers equation in one spatial dimension is analyzed from the point of view of a diffusive evolution equation in terms of nonlinear soliton modes and linear diffusive modes. The transient evolution of the profile is interpreted as a gas of right hand solitons connected by ramp solutions with superposed linear diffusive modes. This picture is supported by a linear stability analysis of the soliton mode. The spectrum and phase shift of the diffusive modes are determined. In the presence of the soliton the diffusive modes develop a gap in the spectrum and are phase-shifted in accordance with Levinson's theorem. The spectrum also exhibits a zero-frequency translation or Goldstone mode associated with the broken translational symmetry.Comment: 9 pages, Revtex file, 5 figures, to be submitted to Phys. Rev.
    corecore