332 research outputs found

    The stabilization of repetitive tracts of DNA by variant repeats requires a functional DNA mismatch repair system

    Get PDF
    AbstractSimple repetitive tracts of DNA are unstable in all organisms thus far examined. In the yeast S. cerevisiae, we show that a 51 by poly(GT) tract alters length at a rate of about 10−5 per cell division. Insertion of a single variant repeat (either AT or CT) into the middle of the poly(GT) tract results in 100-fold stabilization. This stabilization requires the DNA mismatch repair system. Alterations within tracts with variant repeats occur more frequently on one side of the interruption than on the other. The stabilizing effects of variant repeats and polarity of repeat alterations have also been observed in trinucleotide repeats associated with certain human diseases

    The Ursinus Weekly, January 12, 1959

    Get PDF
    Radio station to be set-up with student body consent • Petersen and Drewniak are honored by MAC • Summer study abroad announced by IIE • May Day • Air Force offers commissions to college grads • Frosh present Marooned on Friday, Jan. 16 • Prof. H.C. Symons elected pres. of school board • Dr. I. Progoff speaker at Forum January 14 • YM-YWCA plans for Spring semester • U.C. receives grant from DuPont • Editorial: Radio station • Student opinion • Prof\u27s opinion • Resolutions • Letters to the editor • Soccer team chooses \u2759 captains • Badminton team practices for new season • Courtmen drop close tilt to Fords by 65-64 • Grapplers win over Haverford by 18-16 • Amico speaks • Lester Lanin to be at Sunnybrookhttps://digitalcommons.ursinus.edu/weekly/1375/thumbnail.jp

    Numerical Simulation of the Long-Range Propagation of Gravity Wave Packets at High Latitudes

    Get PDF
    We use a 2-D, nonlinear, time-dependent numerical model to simulate the propagation of wave packets under average high latitude, winter conditions. We investigate the ability of waves to propagate large horizontal distances, depending on their direction of propagation relative to the average modeled ambient winds. Wave sources were specified to represent the following: (1) the most common wave parameters inferred from observations of Nielsen et al. (2009) ((18 km λᵪ , 7.5 min period), (2) waves consistent with the average phase speed observed (40 m/s) but outlying horizontal wavelength and period values (40 km λᵪ , 17 min period), and (3) waves which would be subject to strong ducting as suggested by Snively et al. (2013) (25 km λᵪ , 6.7 min period). We find that wave energy density was sustained over large horizontal distances for waves ducted in the stratosphere. Waves traveling against winds in the upper stratosphere/lower mesosphere are more likely to be effectively ducted in the stratosphere and travel large horizontal distances, while waves which escape in the form of leakage are more likely to be freely propagating above 80 km altitude. Waves propagating principally in the direction of the stratopause winds are subject to weaker stratospheric ducting and thus increased leakage of wave energy density from the stratosphere. However, these waves are more likely to be subject to reflection and ducting at altitudes above 80 km based upon the average winds chosen. The wave periods that persist at late times in both the stratosphere and the mesosphere and lower thermosphere (MLT) range from 6.8 to 8 min for cases (1) and (3). Shorter-period waves tend to become trapped in the stratosphere, while longer-period waves can dissipate in the thermosphere with little reflection or trapping. It is suggested that the most common scenario is of partial ducting, where waves are observed in the airglow after they leak out of the stratosphere, especially at large horizontal distances from the source. Stratospheric ducting and associated leakage can contribute to a periodic and horizontally distributed forcing of the MLT

    The Ursinus Weekly, December 8, 1958

    Get PDF
    Daniels, Brenner chosen king and queen at prom • Rev. O. Rowland to speak at marriage seminar • SEAP shows movie; Plans convention • Stars and Players awards points • MS-WSGA hold annual banquet; Plan Christmas dance December 17 • Handel\u27s Messiah to be presented Dec. 11 • Bob Petersen picked for 1958 ECAC football • Ruby assignments listed; Deadline near • Editorial: Isolation • Work camps • Guardian angels • Futility • Comparisons • Word • Wrestling team begins practice for \u2759 season • Schmoyer places on MAC 2nd team; Drexel\u27s 1st team • Courtmen win first game of season, 78-46 • Girls begin practice for basketball • Bears end season with 0-8 record; \u2759 looks better • Ursinus grad gains position in Ghana • Art news • Ursinus host to CDA last weekhttps://digitalcommons.ursinus.edu/weekly/1373/thumbnail.jp

    Modulation of Low-Altitude Ionospheric Upflow by Linear and Nonlinear Atmospheric Gravity Waves

    Get PDF
    This study examines how thermospheric motions due to gravity waves (GWs) drive ion upflow in the F region, modulating the topside ionosphere in a way that can contribute to ion outflow. We present incoherent scatter radar data from Sondrestrom, from 31 May 2003 which showed upflow/downflow motions, having a downward phase progression, in the field‐aligned velocity, indicating forcing by a thermospheric GW. The GW‐upflow coupling dynamics are investigated through the use of a coupled atmosphere‐ionosphere model to examine potential impacts on topside ionospheric upflow. Specifically, a sequence of simulations with varying wave amplitude is conducted to determine responses to a range of transient forcing reminiscent of the incoherent scatter radar data. Nonlinear wave effects, resulting from increases in amplitude of the modeled GW, are shown to critically impact the ionospheric response. GW breaking deposits energy into smaller scale wave modes, drives periods of large field‐aligned ion velocities, while also modulating ion densities. Complementary momentum transfer increases the mean flow and, through ion‐neutral drag, can increase ion densities above 300 km. Ionospheric collision frequency (cooling) and photoionization effects (heating), both dependent on ionospheric density, modify the electron temperature; these changes conduct quickly up geomagnetic field lines driving ion upflow at altitudes well above initial disturbances. This flow alters ion populations available for high‐altitude acceleration processes that may lead to outflow into the magnetosphere. We have included a representative source of transverse wave heating which, when supplemented by our GWs, illustrates strengthened upward fluxes in the topside ionosphere

    Thermospheric Dissipation of Upward Propagating Gravity Wave Packets

    Get PDF
    We use a nonlinear, fully compressible, two-dimensional numerical model to study the effects of dissipation on gravity wave packet spectra in the thermosphere. Numerical simulations are performed to excite gravity wave packets using either a time-dependent vertical body forcing at the bottom boundary or a specified initial wave perturbation. Three simulation case studies are performed to excite (1) a steady state monochromatic wave, (2) a spectrally broad wave packet, and (3) a quasi-monochromatic wave packet. In addition, we analyze (4) an initial condition simulation with an isothermal background. We find that, in cases where the wave is not continually forced, the dominant vertical wavelength decreases in time, predominantly due to a combination of refraction from the thermosphere and dissipation of the packets’ high frequency components as they quickly reach high altitude. In the continually forced steady state case, the dominant vertical wavelength remains constant once initial transients have passed. The vertical wavelength in all simulations increases with altitude above the dissipation altitude (the point at which dissipation effects are greater than the wave amplitude growth caused by decreasing background density) at any fixed time. However, a shift to smaller vertical wavelength values in time is clearly exhibited as high-frequency, long vertical wavelength components reach high altitudes and dissipate first, to be replaced by slower waves of shorter vertical wavelength. Results suggest that the dispersion of a packet significantly determines its spectral evolution in the dissipative thermosphere

    The Dynamics of Nonlinear Atmospheric Acoustic-Gravity Waves Generated by Tsunamis Over Realistic Bathymetry

    Get PDF
    The investigation of atmospheric tsunamigenic acoustic and gravity wave (TAGW) dynamics, from the ocean surface to the thermosphere, is performed through the numerical computations of the 3D compressible nonlinear Navier-Stokes equations. Tsunami propagation is first simulated using a nonlinear shallow water model, which incorporates instantaneous or temporal evolutions of initial tsunami distributions (ITD). Ocean surface dynamics are then imposed as a boundary condition to excite TAGWs into the atmosphere from the ground level. We perform a case study of a large tsunami associated with the 2011 M9.1 Tohuku-Oki earthquake and parametric studies with simplified and demonstrative bathymetry and ITD. Our results demonstrate that TAGW propagation, controlled by the atmospheric state, can evolve nonlinearly and lead to wave self-acceleration effects and instabilities, followed by the excitation of secondary acoustic and gravity waves (SAGWs), spanning a broad frequency range. The variations of the ocean depth result in a change of tsunami characteristics and subsequent tilt of the TAGW packet, as the wave\u27s intrinsic frequency spectrum is varied. In addition, focusing of tsunamis and their interactions with seamounts and islands may result in localized enhancements of TAGWs, which further indicates the crucial role of bathymetry variations. Along with SAGWs, leading long-period phases of the TAGW packet propagate ahead of the tsunami wavefront and thus can be observed prior to the tsunami arrival. Our modeling results suggest that TAGWs from large tsunamis can drive detectable and quantifiable perturbations in the upper atmosphere under a wide range of scenarios and uncover new challenges and opportunities for their observations
    corecore