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Thermospheric dissipation of upward propagating
gravity wave packets
C. J. Heale1, J. B. Snively1, M. P. Hickey1, and C. J. Ali1

1Department of Physical Sciences, Embry-Riddle Aeronautical University, Daytona Beach, Florida, USA

Abstract We use a nonlinear, fully compressible, two-dimensional numerical model to study the effects
of dissipation on gravity wave packet spectra in the thermosphere. Numerical simulations are performed to
excite gravity wave packets using either a time-dependent vertical body forcing at the bottom boundary
or a specified initial wave perturbation. Three simulation case studies are performed to excite (1) a steady
state monochromatic wave, (2) a spectrally broad wave packet, and (3) a quasi-monochromatic wave packet.
In addition, we analyze (4) an initial condition simulation with an isothermal background. We find that, in
cases where the wave is not continually forced, the dominant vertical wavelength decreases in time,
predominantly due to a combination of refraction from the thermosphere and dissipation of the packets’
high frequency components as they quickly reach high altitude. In the continually forced steady state
case, the dominant vertical wavelength remains constant once initial transients have passed. The vertical
wavelength in all simulations increases with altitude above the dissipation altitude (the point at which
dissipation effects are greater than the wave amplitude growth caused by decreasing background density)
at any fixed time. However, a shift to smaller vertical wavelength values in time is clearly exhibited as
high-frequency, long vertical wavelength components reach high altitudes and dissipate first, to be replaced
by slower waves of shorter vertical wavelength. Results suggest that the dispersion of a packet significantly
determines its spectral evolution in the dissipative thermosphere.

1. Introduction

Gravity waves are ubiquitous in the Earth’s mesosphere and lower thermosphere (MLT) and are acknowl-
edged to have a major role in the dynamics of this region [Oliver et al., 1997; Fritts and Alexander, 2003; Djuth
et al., 2004]. Following the pioneering work of Hines [1960], one of the main effects of gravity waves was
found to be the transport of energy and momentum from source regions, typically in the troposphere [Hung
and Kuo, 1978; Kelley, 1997; Hocke and Tsuda, 2001], to higher regions of the atmosphere, where dissipation
becomes important. Due to conservation of energy, a wave’s amplitude increases as the atmospheric density
decreases in a nonviscous atmosphere as long as the wave remains of small linear amplitude. However, the
effects of molecular viscosity simultaneously increase with decreasing density and counteract the growth of
the wave. In the lower thermosphere the molecular viscosity can become sufficient for dissipation to over-
take the growth of the wave, such that its amplitude will decline as its energy and momentum are deposited
to the mean state. The effectiveness and time scales of damping by molecular viscosity are functions of a
particular wave’s phase speed and spatial scale. Alternatively, if the wave reaches a sufficiently large ampli-
tude, wave breaking or wave-wave interactions can occur resulting in nonlinear deposition of energy and
momentum into the mean flow [Fritts et al., 2006; Yigit et al., 2008, 2009; Fritts and Lund, 2011].

The effects of dissipation on gravity wave dynamics have been investigated by a number of studies, uti-
lizing different approaches that include ray tracing or numerical modeling [Zhang and Yi, 2002; Vadas and
Fritts, 2005; Yu et al., 2009; Hickey et al., 2010, 2011; Liu et al., 2013;Walterscheid, 2013]. Studies of gravity
waves in the MLT suggest that the lower thermosphere can act as a barrier to upward energy propagation.
It is known that waves of different scales dissipate at different altitudes, leading to an atmospheric filtering
effect, where longer-wavelength/shorter-period waves reach the highest altitudes [Pitteway and Hines, 1963;
Francis, 1973; Vadas, 2007]. Thus, waves of different intrinsic properties will deposit their energy at different
altitudes. It has been suggested that the increasing molecular kinematic viscosity with altitude may act to
shorten the dominant vertical wavelength in an isothermal atmosphere, resulting in a more horizontal tra-
jectory and a maximum altitude of energy propagation in the lower and midthermosphere [e.g., Zhang and
Yi, 2002]. It has also been found that the momentum deposited during wave dissipation can cause a body
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forcing which excites secondary waves. These waves can propagate up to 500 km in altitude before they
then dissipate [Vadas, 2007; Vadas and Liu, 2009, 2013].

Vadas and Fritts [2005] derived an anelastic dispersion relation which includes molecular viscosity and ther-
mal diffusivity as well as deriving the corresponding ray tracing equations. They found that high phase
velocity gravity waves, with large vertical wavelength, dissipate at the highest altitudes. In some cases, ini-
tially large vertical wavelengths were found to decrease significantly by the time the waves dissipated. In
particular, it was found that !z decreased above the dissipation altitude for a time-varying wave packet
under isothermal conditions, when tracing the path of the packet as described by its group velocity.

Reduction of vertical wavelengths was also reported by Liu et al. [2013], using a 2-D nonlinear, compressible
numerical model, who analyzed an isolated packet as it dissipated in both isothermal and nonisothermal
atmospheres. They also note the competing effects of background temperature and molecular viscosity,
which act to increase and decrease the vertical wavelength, respectively, in a nonisothermal case study.

In contrast, Hickey et al. [1998] utilized a full-wave model (FWM) simulating a one-dimensional, monochro-
matic, steady state forcing, and found the vertical wavelength to always increase with altitude under the
effects of dissipation. As a further complication to interpretation,Waterscheid and Hickey [2011] suggest
that group velocity, which forms a large part of the ray tracing formalism, becomes a meaningless mea-
sure of vertical energy flow, while gravity waves are propagating in the lower thermosphere and are subject
to dissipation. They also noted that ray tracing is derived from the WKB approximation which assumes
slow-varying background fields as compared to the gravity wave vertical wavelengths [Einaudi and Hines,
1971]. Recent results also suggest that ray tracing may require understanding of the nature of the wave
packet’s localization and thus bandwidth, especially under dissipative conditions [Walterscheid, 2013].

In response, Vadas and Nicolls [2012] suggest that the two approaches are fundamentally different and
do not yield the same solution. While Vadas and Fritts [2005] assume a complex wave frequency (") and
considers time-dependent and spatially localized waves, the FWM employs a steady state, horizontally
homogeneous approach with complex kz , and constant forcing and energy inputs. It is suggested by Vadas
and Nicolls [2012] that it is unclear if a Fourier series summation of real " steady state solutions will yield
accurate altitude solutions to time-dependent Navier stokes equations, and whether this approach is accu-
rate when used to study transient wave packets. A physical explanation of the difference in the results is
given in paragraph 13 of Vadas and Nicolls [2012].

This paper uses a fully compressible, nonlinear 2-D numerical model, adapted from Snively and Pasko [2008]
and Snively [2013], to investigate the nature of wave packet dissipation, for spectrally broad, steady state,
and intermediate scenarios by simulating three conditions: (1) a spectrally narrow, continuously forced wave
(creating a steady state condition), (2) a spectrally broad gravity wave packet, created with spatially isolated
forcing, and (3) a quasi-monochromatic gravity wave packet. We also compare with (4) an initial condition
wave packet, similar to that of Liu et al. [2013], to investigate its time-dependent dissipation.

2. NumericalModel
2.1. Governing Equations and Background State
The numerical model utilizes a modified set of the Clawpack libraries [LeVeque and Berger, 2004], in the
form described fully by Snively and Pasko [2008]. The equations solved are the nonlinear, fully compressible,
Euler equations with the inclusion of two separately solved equations describing molecular viscosity and
thermal conductivity.

Conservation of mass

#$
#t

+ ∇ ⋅ ($!) = 0 (1)

Conservation of momentum

#
#t
($!) + ∇ ⋅ ($!!) = −∇p − $" (2)

Conservation of energy

#E
#t

+ ∇ ⋅ (E + p)! = −$gvz (3)
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Figure 1. Plot of the (a) MSISE-90 temperature profile for the time-dependent forcings and (b) the dissipative coefficients
with altitude for the MSIS-90E temperature simulations.

Equation of state

E = p
(% − 1) +

1
2
$(! ⋅ !) (4)

Dissipation by molecular and thermal diffusion, accounting for the same processes described by the ray
tracing model of Vadas and Fritts [2005], is applied via time splitting using an explicit forward difference
method to solve the “heat” equations:

#!
#t

− &∇2! = 0 (5)

#T
#t

− '∇2T = 0 (6)

where ! is the velocity, $ and p are density and pressure, T is temperature, g is the acceleration due to
gravity, % is the ratio of specific heats, and E is total energy. Note that no sponge layer or Rayleigh friction
is used.

To account for the effects of varying composition in the lower thermosphere, we define the ratio of specific
heats, % , using an average of the monatomic and diatomic specific heats as described byWalterscheid and
Hickey [2001]:

% =
5[O] + 7([N2] + [O2])
3[O] + 5([N2] + [O2])

(7)

This differs by only a few percent at lower thermospheric altitudes in comparison to approximations used by
Vadas [2007] or Snively and Pasko [2008], and sensitivity tests confirm that all results are closely comparable.
The specific gas constant Rspecific is also specified to vary with composition

Rspecific = Rideal
([N2] + [O2] + [O])

16[O] + 28[N2] + 32[O2]
(8)

The kinematic molecular viscosity and thermal conductivity are & and ', respectively, with the kinematic
molecular viscosity (m2/s) set to match that of Hickey et al. [1998], given by the expression of Rees [1989]:

& = 1
$0

3.43[N2] + 4.03[O2] + 3.90[O]
([N2] + [O2] + [O]) T 0.69

0 10−7 (9)

Here $0 and T0 are the background density and temperature, and the molecules in square brackets represent
the number densities. The thermal conductivity is related to the molecular viscosity via the Prandtl number
Pr = &∕', which is set to 0.7. The diffusivities used in the simulations are shown in the Figure 1b.
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Table 1. Model Dissipation Altitudes for the
Various Forcing Cases

SS QM SB

u peak altitude (km) 127 124 152
w peak altitude (km) 134 134 188
u′w′ peak (km) 129 129 166

The background temperature used in the
time-dependent simulations was obtained using the
MSISE-90 empirical model [Hedin, 1991], set to Daytona
Beach at 0 LT on 1 January 2012. The temperature profile
is shown in Figure 1a.

2.2. Numerical Domain and Forcing
The numerical domain for the time-dependent simu-
lations was specified to be 100 km in the x direction

(horizontal) and 300 km in the z direction (vertical), with a resolution of 0.5 km in both cases. Results
were output every 15 s, with a time step size of ∼0.66 s for a Courant-Friedrichs-Lewy number of 0.5. The
side boundaries were set to be periodic, with a reflective bottom boundary (at ground) and an open top
boundary. A vertical body forcing was applied to the bottom boundary as given by

Fz(x, z, t) = Ae−0.5((z−zc)
2∕(2z ) × e−(t−tc)

2∕2(2t sin("(t − tc) − k(x − xc)) (10)

In each of the simulations, the spatial parameters of the forcing were the same and produced a Gaussian
modulated sine wave. Parameters are A = 5×10−6 N/kg, yz=0, (z = 3 km, and k = 2π∕!x where, !x = 100 km
and are summarized in Table 1. This produces exactly one horizontal wavelength in the domain which,
due to the periodic boundary, gives an effectively infinite domain in x and spectrally isolates the 100 km
horizontal mode. The amplitude was chosen to be small enough that it limits nonlinear interactions.

The time varying component of the forcing differed for each of the three simulations. For the quasi-
monochromatic (QM) case, tc = 4) , and (t = ) , where ) = 30 min (the period of the wave) and " = 2π

)
. For

the spectrally broad (SB) packet, tc = 2), (t = )
4
, where ) and " have the same definition as before. The

steady state (SS) case is forced in a piecewise manner where its forcing takes the form of equation (10) with
tc = 4) , and (t = ) , where ) = 30 min (the period of the wave) and " = 2π

)
for t ≤ tc. For t > tc the forcing

takes the form

Fz(x, z, t) = Ae−0.5((z−zc)
2∕(2z ) × sin("(t − tc) − k(x − xc)) (11)
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Figure 2. (left) The time-dependent components of the body forcing for each of the three simulations, as described in
equations (10) and (11). (right) The corresponding frequency spectrum excited at z = 0 km.
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Figure 3. The horizontal wind of the quasi-monochromatic simulation at t = 232, 283, 316, and 350 min. The red box
indicates where the vertical slice (for Figure 4) was taken.

where "=2π
)
and ) = 30 min. The time-dependent parts of the forcing are shown in Figure 2, along with the

corresponding frequency spectra at ground which is obtained by Fourier transform. No background winds
were included in any of the simulations.

3. Results andAnalysis
3.1. Gravity Wave Propagation
Figure 3 shows the unscaled horizontal wind output of the quasi-monochromatic forcing simulation at
t = 232, 283, 316, and 350 min. The gravity wave packet does not travel very far over this time span. Its cen-
tral position and extent remains relatively unchanged in the vertical, while the phase continues to progress
and the amplitude increases. This same effect is seen in Zhang and Yi [2002], where the packet ceases to
propagate vertically, and the group velocity becomes nearly exclusively horizontal when it reaches its
dissipation altitude.

In order to investigate the time evolution of the gravity wave propagation, a vertical slice was taken at
x=50 km (denoted by the red rectangle in Figure 3) from the simulation at each time step. Each slice was
then placed adjacent to each over in columns to produce a time evolution plot. Figure 4 shows each of
the three simulations after the slices have been placed next to each other to illustrate the effect that the
thermosphere has on a gravity wave as it propagates. The vertical spreading of the different packets is

(a) (b) (c)

A
lti

tu
de

 (
km

)

50

100

150

200

250

300

50 150 250 350

Time (mins)
100 200 300 400 500100 200 300 400 500

Time (mins)Time (mins)

Quasi-monochromatic
Steady-state forcing

Spectrally broad 
packet forcing  forcing

Horizontal wind speed (m/s) at x=50km with time

−1
−0.8
−0.6
−0.4
−0.2
0
0.2
0.4
0.6
0.8
1

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Figure 4. (a–c) The evolution of the horizontal wind with time for each gravity wave simulation case, produced by
stacking vertical slices of the domain, each taken at x = 50 km, into columns.
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Figure 5. The evolution of the vertical wave number with time for
the steady state forcing case. Derived (a) from the vertical wind and
(b) from the horizontal wind. The overlaying white line indicates the
maximum spectral intensity with time. It shows that the vertical wave
number settles toward a constant value when the simulation reaches
steady state.

very apparent, with the spatially broad
packet dispersing the most due to its
rich spectral content. It is also clear from
the time evolution of the spectrally
broad packet that the high frequency
components (those with highly ver-
tical phase fronts) reach the highest
altitudes and dissipate first, leaving the
slower, lower, frequency components
(with more-horizontal phase fronts) to
become dominant at later times in the
simulation. Thus, the dominant spectral
components change dramatically with
the evolution of the wave. In this case,
if tracking the dominant vertical wave-
length in time, the vertical wavelength
would appear to decrease. In the steady
state simulation, energy is being con-
stantly added to the system, as such the
wave is present throughout the atmo-
sphere (up to where the wave dissipates),
and the wave field does not change sig-
nificantly in time once a steady state has
been reached. Also, for the steady state
case, a single frequency component will

dominate at late times, unlike the case of a packet whose position, span, and dominant frequency is time
dependent. The quasi-monochromatic case, as expected, lies somewhere in between these two, in which
the frequency content is broader than the steady state case but narrower than the spectrally broad case.
Beyond 450 min, the quasi-monochromatic (QM) packet has significantly dissipated, and shorter vertical
wavelengths become dominant. Already, this highlights a difference between steady state solutions such as
Hickey et al. [1998] and more spatially isolated gravity wave packets such as those investigated by
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Figure 6. The evolution of the vertical wave number with time for the
spectrally broad forcing case. Derived (a) from the vertical wind and
(b) from the horizontal wind. The overlaying white line indicates the
maximum spectral intensity with time. It shows a strong shortening of
the vertical wavelength with time, unlike the steady state case.

Vadas [2007], Vadas et al. [2009], and Liu
et al. [2013].

3.2. Fourier Analysis of Vertical Wave
Number and Wavelength
Following a similar analysis of Zhang and
Yi [2002] and Liu et al. [2013], we take
a 2-D Fourier transform of the simula-
tion domain at each time step to obtain
a spectrum and components in kx and
kz wave number space. We then isolate
the 100 km horizontal wavelength com-
ponent, which is the dominant mode
allowed by the simulation space, and
stack this in time. This allows us to track
the vertical wave number spectra in time
and track the evolution of the domi-
nant vertical wavelength of the packet.
Figure 5 shows the evolution of the dom-
inant vertical wave number with time
for the steady state forcing. The verti-
cal wave numbers are negative, which
indicate an upward group velocity. An
increasingly negative vertical wave
number denotes a decrease in
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Figure 7. The evolution of the vertical wave number with time for the
quasi-monochromatic forcing case. Derived (a) from the vertical wind
and (b) from the horizontal wind. The overlaying white line indicates
the maximum spectral intensity with time.

vertical wavelength. In the steady state
case, we see a relatively small initial ver-
tical wave number as the high-frequency
portions of the spectrum and transients
reach the highest altitudes and are ini-
tially dominant. As time progresses, the
vertical wave number becomes increas-
ingly negative and reaches a constant
value as the simulation reaches its steady
state, and the transients dissipate away.
In the steady state case, we do not see
a decrease in vertical wavelength with
time. It is also worth noting that the ver-
tical wave numbers derived from the
horizontal and vertical wind velocities
are different as expected based upon the
study of Einaudi and Hines [1971]. In the
horizontal wind measurement the dom-
inant vertical wavelength converges to
a value of 16 km, whereas it converges
to 25 km when derived from the verti-
cal wind. This occurs because the relative
magnitudes of the horizontal and verti-

cal winds are dependent upon the angle of phase propagation, which varies with altitude due to the varying
background atmosphere and also due to the changing spectral content of the packet.

Figure 6 shows the evolution of the spectrally broad packet forcing. In this case there is a continuous
decrease in the vertical wavelength with time, and the result reflects that of Zhang and Yi [2002] and Liu
et al. [2013]. When there is a broad spectrum of waves excited, we see the largest change in vertical wave
number of the three cases, as the packet evolves. At 100 min, the vertical wavelength derived from verti-
cal wind is 100 km, and 75 km when derived from the horizontal wind. The peak in the spectrum comes at
168 min and 171 min, with a wavelength of 60 and 42 km, respectively, for the vertical and horizontal winds.
Finally, at 300 min, the vertical wavelengths are reduced to 30 km and 13.6 km for the vertical and horizontal
winds, respectively. We suggest this is due to a shift in the central frequency of the packet itself as the high
frequency, longer wavelengths dissipate first and the lower frequency, shorter wavelength components
become dominant as time proceeds. For reference, this is what is seen in Figure 4b as the longer wavelength,
high frequency components are dominant early on in the simulation (and reach a higher altitude). They then
dissipate first and make way for the slower, shorter wavelength waves which become dominant later in the
simulation (and at lower altitudes). The fact that the dominant region of the wave shifts from higher to lower
altitudes is consistent with this explanation and is the prominent (but not necessarily the only) observable
cause of the decreasing vertical wavelength with time for this case.

Figure 7 shows a case which is intermediate to the two former cases. The quasi-monochromatic forcing is
spectrally more narrow band than the broad packet case. Of the three, this is the case which is most similar
to previous numerical studies [e.g., Zhang and Yi, 2002; Liu et al., 2013] and provides the best compari-
son. We still see a steady decrease in the vertical wavelength with time after the transients decay (around
250 min) but not as much as in the spectrally broad case. There is also a noticeable switch in the vertical
wavelength at 325 min, and then again, at 454 min in the horizontal wind measurement. This occurs due
to a change in the dominant period of the packet at these times (at an altitude of 120 km; see Figure 9c).
At 275 min, the vertical wavelength values are 30 km and 16 km as derived from the vertical and horizon-
tal winds, which are similar to the spectrally broad values at the same time. The spectral intensity peaks at
∼342 min with !z values of 30 and 21 km, respectively, for vertical and horizontal winds. By 400 min, the
corresponding vertical wavelengths have decreased to 25 and 17.6 km, respectively. Beyond this time, the
spectral power decreases rapidly, and Figure 4c shows that the wave amplitude is decaying noticeably, indi-
cating strong dissipation. Here we see a more rapid shortening of the vertical wavelength as the longer
wavelengths (higher frequency) dissipate away, and the shorter wavelengths (lower frequency) packet

HEALE ET AL. ©2014. American Geophysical Union. All Rights Reserved. 3863
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Table 2. Time-Dependent Forcing
Parameters for the Three Simulations,
Used in Equations (10) and (11)

SS (t ≤ tc) QM SB

) (min) 30 30 30
tc (min) 120 120 60
(t (min) 30 30 7.5

components become more dominant. At the end of the
simulation the vertical wavelengths have decreased to
15 km and 10.7 km for the vertical and horizontal wind
measurements, respectively.

From the three different simulations, it appears that the
amount of decrease in vertical wavelength with time
is dependent upon the forcing used and, in particular,
the breadth of the spectrum excited. It is noted that

the atmosphere is nonisothermal and that background temperature affects the vertical wavelength also;
however, the dominant factor in causing the vertical wavelength to decrease appears to be the earlier dis-
sipation of the higher frequency components, as they reach the higher, more viscous atmosphere ahead of
the slower, lower frequency waves.

3.3. Momentum Flux
The momentum flux (per unit density) is given by

f = u′w′ (12)

where the overline denotes an average taken over the horizontal wavelength. Since our simulation is peri-
odic, this calculation is simply summed over the horizontal domain at each altitude, divided by the (fixed)
horizontal wavelength. Tracking the altitude of the peak value of the momentum flux with time gives an
indication of where the dominant (most energetic) portion of the gravity wave packet resides. The altitude
at which the magnitude of the momentum flux is maximum is referred to as the dissipation altitude [Vadas
and Fritts, 2005]. This is the point where the diffusivity becomes large enough to overtake the growth of
the wave due to decreasing background density. Table 2 shows the dissipation altitudes and peak altitude
of wind velocity for each forcing. We also obtain an estimation of the dissipation altitude from a full-wave
model (FWM) [Hickey et al., 1998] which agrees well with our model, suggesting a dissipation altitude of
124 km compared to our 129 km; however, our solution does oscillate slightly about its steady state. These
peak altitudes indicate the altitude at which dissipation effects become significant.

Figure 8 shows the plot of the altitude of the peak momentum flux, perturbation horizontal wind (u′), and
vertical wind (w′) with time. Three lines are plotted for each of the three forcings: the momentum flux peak
(as defined above), the horizontal wind peak (calculated by averaging the absolute horizontal wind over
a horizontal wavelength), and the vertical wind peak (calculated by averaging the absolute vertical wind
over a horizontal wavelength). Since the horizontal and vertical winds vary throughout the spectrum, the
altitudes where they achieve maximum values are time dependent.

For the quasi-monochromatic forcing, the momentum flux peaks at 129 km at ∼350 min. It is at this time
that the molecular viscosity acts to reduce the absolute amplitude of the wave and dissipation really takes
hold. For the steady state case, the momentum flux peak levels out at 123 km altitude between 260 and
347 min. Here the wave enters the stable region of the lower thermosphere, and its vertical wavelength
shrinks, reducing its vertical group velocity. The wave exits this region at 350 min and then continues to
propagate upward until it reaches its dissipation altitude at 450 min (at an altitude of 129 km), at this stage
the solution begins to oscillate slightly about its steady state, due to the time-dependent nature of the
simulation and reflections within the domain.

Note that while these plots tell us the altitude of the dominant portion of the wave spectrum at any given
time, the absolute peak in the momentum flux altitude does not necessarily correspond to the time when
the spectral intensity and thus momentum flux is maximum. A clear example of this is the case of the spec-
trally broad forcing. Although the momentum flux peak altitude occurs at around 140 min (166 km), we can
see from Figure 6b that the spectral intensity is actually maximum at ∼ 175 min (where the momentum flux
height drops to 159 km, these are the values quoted in Table 2). This occurs because of the changing dom-
inant frequency component of the packet with time and is particularly prominent for the spectrally broad
packet. The decrease in altitude of the momentum flux peak is a direct result of the selective dissipation of
the higher (to progressively lower) frequency components of the packet with time. At 140 min, the domi-
nant period is 16 min; hence, this part of the wave packet propagates higher, faster, and dissipates earlier
than the 19.6 min period component which then becomes dominant at the time of peak spectral intensity.
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Figure 8. (a–c) Altitudes of the maximum values of the momentum flux, horizontal, and vertical winds as a function of time, shown for all three time-dependent
forcing case studies.

3.4. Wavelet Analysis of Frequency Components
In order to study the frequency components of each forcing as a function of both time and space, a wavelet
analysis was performed on the modeled horizontal wind. We utilize a wavelet analysis as described in
Torrence and Compo [1998] using their software (http://paos.colorado.edu/research/wavelets/). We perform
a convolution between a Morlet wavelet of varying period scales, ranging from 0.5 to 630 min, and the data
set, while sliding it along in time, to assess the frequency components of the data set. This allows us to mea-
sure the frequency components as a function of altitude as well as time. When utilizing this method, we are
able to look at localized regions and probe a range of scales rather than looking at the whole domain via
standard Fourier analysis.

The analysis was performed in one dimension, so we take values at x=50 km with time and produce a
single time series plot of wind velocity for each altitude. The wavelet analysis is then performed on each of
these data series, producing a plot of period and time.

We then take the dominant period component within the cone of influence, which denotes the maximum
useful period without edge effects, at each time, for each altitude. The result gives a time, altitude, and dom-
inant period plot related to the x, y, and z axes, respectively, as shown in Figure 9. Doing this allows us to
compare the frequencies present within the model, with the change in vertical wavelength over time as
shown in Figures 5–7. In the region shown in the Figure 9a (steady state forcing), there are three-period com-
ponents present over the time and altitude plotted (subject to limitations of temporal resolution). Beyond
417 min, the entire domain shows a single dominant period component (27.8 min); it is here that the simula-
tion is near to its steady state. Comparing this to Figure 5b, we see that the increase in negative vertical wave
number occurs simultaneously (also 417 min) with the change in dominant period from the 33 min period
(lighter blue) to the 27.8 min period (darker blue). Also from Figure 8a, we see that the wind peak occurs at
the altitude (122 km) where the period component change occurs (at a time of 417 min).
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Figure 9. (a–c) The dominant period (denoted by the color) as a function of time and altitude. Shown for all three time-dependent forcing case studies, taken
from the modeled horizontal wind perturbations.
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Figure 10. The vertical wavelength with altitude for the steady state forcing case, after reaching approximate steady
state, for cases (a) with viscosity and (b) without. Comparisons with the Hines inviscid dispersion relation and with the
Hickey et al.’s [1998] FWM are included.

Figure 9b, corresponding to the spectrally broad packet forcing, shows a much larger range of dominant
periods throughout the domain. At any given altitude, the dominant period component increases in time,
which for a fixed horizontal wavelength, would mean an increase (decrease) in vertical wave number
(wavelength) under the assumption of the classical Hines inviscid dispersion relation.

Figure 9c shows the dominant period components in the quasi-monochromatic forcing case. As expected,
this result is intermediate between the two former cases. The period spectrum throughout the domain is
broader than the steady state case but narrower than the spectrally broad packet case. In Figure 7b, there
is a jump (within our time resolution) at both 325 and 454 min in the vertical wavelength derived from the
horizontal wind. At these times, Figure 8c shows that the altitude of the maximum amplitude as determined
from the horizontal wind is 122 km. This jump in vertical wavelength can be explained by the change in
dominant frequency. Figure 9c shows that at 122 km, the frequency changes from 27.80 to 33.06 min at
t = 325 min and from 33.09 to 39.00 min at t = 454 min.

3.5. Vertical Wavelength With Altitude
For the steady state (single frequency) case, we calculate the vertical wavelength with altitude by measuring
the lines of constant phase directly from the simulation. This is done by finding the horizontal grid position
at which the wave velocity is maximum, for each altitude. The horizontal grid location is plotted as a func-
tion of altitude to give us a curve of constant phase for a given time t. Once we have the lines of constant
phase, we take a tangent to the curve at each altitude. Since the horizontal wavelength is fixed throughout

the simulation, multiplying the tangent to the curve *!z
*!x

by the horizontal wavelength !x = 100 km, will give

us an approximate value of the vertical wavelength (!z) at each altitude, where the resolution is limited by
our grid size to 0.5 km.

We compare our measured vertical wavelengths with the prediction made by the anelastic version of the
Hines [1960], inviscid dispersion relation [Gossard and Hooke, 1975] given by

"2
I =

k2N2

m2 + k2 + 1∕4H2
(13)

where "I is the intrinsic frequency and taken to be 2π∕30 min, N is the buoyancy frequency,m is the vertical
wave number, k is the horizontal wave number (taken to be 2π/100 rads/km−1), and H is the density scale
height. In addition, we compare our steady state result with that of Hickey et al.’s [1998] FWM. Figure 10
shows the vertical wavelength as a function of altitude taken at a time when the simulation exhibits steady
state behavior for both the viscous and inviscid cases. The (viscous) steady state forcing agrees very well
with the FWM prediction model. For the inviscid case, the vertical wavelength agrees well with the Hines
dispersion relation and FWM, with some fluctuations apparent at high altitudes due to interaction with the
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Figure 11. The temporal evolution of the vertical wavelength spectra for
the isothermal simulation. Panel (a) shows the non-normalized spectra
and panel (b) shows the spectra which has been normalized to the maxi-
mum value at each time. The overplotted white line denotes the maximum
spectral intensity with time.

upper boundary of the model. We
note that the momentum flux peak
occurs at an altitude of 129 km in the
viscous steady state case, which is
where the wave dissipation begins to
cause a divergence between the pre-
diction based on the Hines inviscid
dispersion relation and the prediction
based on simulations that include vis-
cous effects. We do not see a decrease
in vertical wavelength in altitude
above the dissipation altitude, at any
fixed time, but we do note that back-
ground temperature variations play a
significant role in the wave’s vertical
structure. However, this is accounted
for in the vertical wavelength pre-
diction of Hines; thus, any difference
between that and the simulation
results and FWM prediction should be
due to the effect of viscosity.

4. ComparisonWith Previous Studies
4.1. Isothermal Initial Condition Run
The previous simulations incorporated a realistic background temperature structure, which contributes
to the altitude dependence of vertical wavelength. In order to look at a more simplified case, we perform
an isothermal simulation, with an initial wave condition specified within the horizontal wind field. For the
purpose of providing a direct comparison, this simulation is based upon parameters provided by Liu et al.
[2013], which specify a well-defined packet under isothermal conditions. In particular, we recreate Figure 4
using case B from Liu et al. [2013, Table 1]. The parameters used are T = 239 K, %=1.4, R = 287 J kg−1 K−1,
!x = 20 km, !z = 10 km, )gw = 11.76 min. The scale height is taken to be 7 km, and the buoyancy frequency
is 0.02 radius s−1.

The horizontal velocity perturbation is given by

u′(x, z, t = 0) = A exp
[
− ln(2)

(z − z0)2

2(2
z

]
exp

( z − z0
2H

)

⋅ cos
[
kxx + kz(z − z0)

] (14)

where A=1.0×10−3 m/s, z0=60 km, (z=10 km= !z , and the other perturbation quantities are
derived using the polarization relations as set out in Fritts and Alexander [2003]. The gravity waves are
density weighted by the term ($0(z)∕$0(zr))1∕2 where zr=60 km. The kinematic molecular viscosity is
given as

&(z) = 3.5x10−7T(z)0.69∕$(z) (15)

The differences between our simulation and that of Liu et al. [2013] are that we did not use a Raleigh friction
term. We use only the dissipation processes included in Vadas and Fritts [2005], and our domain was only
20 km × 170 km with horizontal and vertical resolutions of 0.5 km. Our time step was also longer at a value
of 0.8 s.

In recreating Figure 4b from Liu et al. [2013] we highlight an important difference. Liu et al. [2013] take
the vertical wavelength spectrum and normalize it to the maximum power at each time. The resulting
plot, recreated here in Figure 11b, shows a slope beginning at about 100 min that indicates a decreasing
(increasing) vertical wavelength (wave number) with increasing time. Figure 11a shows the result of the
power spectrum without normalization. In this case, the bottom portion (higher-|m| portion) of the spec-
trum remains nearly constant with time, while the spectral power tapers off from the top (lower-|m|
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Figure 12. Figure shows a time evolution of the horizontal wind (at x = 50 km) for (a) the viscous case and (b) the
inviscid case, with paths defined by (1) the maximum amplitude of the packet (blue), (2) the group velocity as defined by
Hines [1960] (green), and (3) the maximum amplitude from the viscous case overlaid on the inviscid case (red).

portion), indicating that the higher frequency (longer wavelength) components are dissipating away first
as time progresses. This is the same mechanism as had previously been suggested in this paper. Although
there is still a small shift in the vertical wave number spectrum toward higher wave numbers, perhaps
indicating a decrease in vertical wavelength with time due to dissipation, the initial and dominant effect
appears to be the selective dissipation of the higher frequency components within the packet; essentially,
the waves that arrive first are removed first.

In order to substantiate this claim, we produce two additional plots. Figure 12 is similar to Figure 4 but also
includes various “ray” paths overlaid for (a) a viscous case and (b) an inviscid case. The overlaying blue line
shows the path taken by the maximum wind amplitude of the packet in time, which corresponds to the
dominant frequency components in the Fourier transforms of Figure 11a. The vertical wavelength is derived
(using the same method as section 3.5) along this path and plotted as the blue line seen in Figure 13a for
the viscous case. We see, as with the Fourier analysis, that the vertical wavelength decreases from 10 km
to 8.2 km between 90 and 150 min when viscosity is present. This time period corresponds to when the
packet is strongly dissipating, and it ceases to propagate vertically (beyond z=133 km) and instead appears
to propagate in a purely horizontal direction (see Figure 12a). However, if we take a horizontal slice at
z=133 km (as denoted by the white line in Figure 12 and plotted in Figure 13c), it is clear that we are seeing
different parts of the packet spectrum as time progresses. At t=100 min the approximate period of the wave
is 11.2 min, but by 120 min it has increased to approximately 13 min. Using the Hines (inviscid) dispersion
relation for these approximate periods, we obtain vertical wavelength values of 10.6 and 8.84 km, respec-
tively. While these values are only estimates, they are, nonetheless, consistent with the decrease in vertical
wavelength simulated earlier. This supports our claim that the dominant effect observed in packet dissi-
pation is the decrease of vertical wavelength in time, due to the initial dominance of the higher frequency
(longer wavelength) which travel faster and dissipate first, giving way to the lower frequency (shorter
wavelength) components of the packet.

In addition, we plot the trajectory of the packet as predicted by the group velocity of the central frequency
and wavelength of the packet, and shown by the green line in Figure 12. The group velocity used was that
derived from the Hines inviscid relation and given by

Vgz =
−m"2

"(k2 +m2 + 1
4H2 )

(16)

We then plot the vertical wavelength with time along this vertical trajectory (Figure 13a, green line) and
find that the vertical wavelength increases around the same time that the vertical wavelength measured by
the maximum amplitude of the packet begins to decrease. This occurs because, while the packet dissipates
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Figure 13. (a) The vertical wavelengths measured along the corre-
sponding paths in Figure 12a. (b) The vertical wavelengths measured
along the corresponding paths in Figure 12b. (c) A horizontal slice at
z = 133 km for the viscous (black) and inviscid (red) cases.

and its upward trajectory ceases, the tra-
jectory described by the inviscid group
velocity continues upward and thus
passes through the higher-frequency
(longer wavelength) portions of the
packet which are able to reach higher
altitudes before dissipating.

In the inviscid case, the trajectory traced
out by the maximum amplitude of the
packet and that of the group velocity
are the same since the molecular vis-
cosity and thermal conductivity are not
there to halt the upward propagation of
the wave packet. Even though this was
specified as a quasi-monochromatic ini-
tial condition source in both Liu et al.
[2013] and in our simulations, there is a
clear dispersion of the packet as it prop-
agates upward. Figure 13b shows, as we
would expect, that the vertical wave-
length remains approximately constant
along the group path when no viscous
effects are present. Figure 13c shows the
horizontal wind amplitudes as a func-
tion of time at z = 133 km (where the
packet ceases its upward propagation)
for the viscous and inviscid cases. It can
be seen that the wave packet is almost
exactly the same except for a decrease in
amplitude in the viscous case. This sug-
gests that it is essentially the “cutting
off” of the dominant (central frequency
and wave number) part of the packet by
dissipation above 133 km which causes
the maximum amplitude of the packet
to migrate to the lower frequency com-
ponents of the packet (and hence cause
the cessation of the upward trajectory of
the packet). In order to emphasize this

point, we overlay the path of the maximum wind amplitude from the viscous case (Figure 12a, blue line)
onto the inviscid case and derive the inviscid vertical wavelength along this same path (Figure 12b, red line).
We see that there is very little difference between the measured vertical wavelength along this same path
in the viscous and inviscid simulations. This suggests strongly that the decrease in vertical wavelength, seen
in the viscous case in Figure 12a, is an effect created by the time-dependent dissipation of the different
frequencies within a packet.

5. Discussion and Conclusions

Using a 2-D nonlinear and compressible model [Snively and Pasko, 2008], we simulated gravity wave
packets generated by three separate forcings, to investigate the dissipation of wave packets of differ-
ent spectral content. Our three forced simulations consisted of (1) a steady state, (2) a spectrally broad
packet forcing, and (3) a quasi-monochromatic packet, each with a period of 30 min and horizontal wave-
length of 100 km. In addition, we simulated gravity waves specified as an initial condition in an isothermal
background atmosphere.
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The amplitude was small enough to ensure that all interactions were approximately linear, and no back-
ground winds were specified.

We investigated the time evolution of the vertical wave number spectrum in each case and found that the
dominant vertical wavelength of the steady state simulation (1) remained at a constant value of 16 km
after the transients passed. The other two cases (2 and 3) showed a steadily decreasing vertical wave-
length with time as seen in previous studies [Liu et al., 2013; Zhang and Yi, 2002]. The spectrally broad
packet showed the greatest change in vertical wavelength with time and highlighted the fact that the
earlier dissipation of higher-frequency wave components can lead to an observed decrease in vertical wave-
length. The quasi-monochromatic packet also exhibited a decrease in vertical wavelength in time which
could be attributed to the temperature structure, earlier dissipation of higher frequency components in
time, and perhaps the direct effect of dissipation shortening the vertical wavelength, as suggested by
Vadas and Fritts [2005].

A wavelet analysis, following the methods of Torrence and Compo [1998], was used to determine the domi-
nant period components of each simulation in both time and space. As expected, we identify a broad-period
spectrum in the spectrally broad packet case which contributes to the large change in vertical wavelength
with time. In the steady state case we see only one significant change in vertical wavelength, corresponding
to a change in dominant period as identified in the wavelet analysis. At late times, one component is clearly
dominant. In the quasi-monochromatic case, we attribute two large changes in the vertical wavelength in
time, to changes in the dominant period.

We compared the results of our studies with previous studies utilizing other models including
time-dependent simulations by Liu et al. [2013] and Zhang and Yi [2002] and steady state models [Hickey et
al., 1998]. In particular, we find that the dissipation altitude matches very well with that derived from simu-
lations using the Hickey et al.’s [1998] FWM for the steady state case, and with Liu et al. [2013] for the initial
condition case studies. In the steady state case, the variation with altitude of the vertical wavelength show
good agreement with the Hines prediction up to the dissipation altitude (about 129 km altitude), diverg-
ing above as expected. The vertical wavelength agrees very well with the results of the FWM at altitudes
above the dissipation height. We note that the vertical wavelength always increases with altitude above the
dissipation altitude at an instant in time, as suggested inWaterscheid and Hickey [2011]. However, we also
note that the background temperature structure has a strong effect on the vertical wavelength change with
altitude, especially at altitudes where the wave amplitudes are still large.

For the initial condition-based run (4), we find that creating a normalized power spectrum at each time [e.g.,
Liu et al., 2013] will lead to a general downward slope in the spectra suggesting a decrease in vertical wave-
length. However, when the spectra are not normalized, they appear mostly flat in time except for a tapering
from the long-wavelength part of the spectrum that we suggest is caused by the earlier dissipation of high
frequency components, with high vertical group velocities, by the thermosphere. Further analysis shows
that when tracking the vertical wavelength with time along the trajectory traced out by the maximum wind
amplitude of the packet, the decrease in wavelength is consistent with the increasing dominant period of
the wave packet as the higher frequencies dissipate away. By comparing with an inviscid case, we suggest
that the dominant portion of the packet is essentially "cut off" by dissipation above 133 km causing the
dominant portion of the packet to move to the lower frequencies and cause the trajectory to become nearly
horizontal. Essentially, the most important reason for the decrease in vertical wavelength in time occurs
because the waves that arrive first (the higher frequency, longer wavelength components of a packet) are
removed first.

In conclusion, we suggest that the decrease in dominant vertical wavelength of the simulated pack-
ets (when not continuously forced) in time, is predominantly due to the selective dissipation of the
higher-frequency packet components and the change of temperature with altitude via the following mech-
anism. The faster, longer !z parts of the packet propagate upward, with amplitude increasing as ∼e

z
2H .

They reach an altitude (dissipation altitude) where dissipation overtakes growth, and at greater heights their
amplitude decays. They are followed by the slower, shorter !z components that experience greater dissi-
pation rates than the faster waves, and hence, their dissipation altitudes are lower. The result is that faster
waves of large !z travel higher into the thermosphere but dissipate first and are then replaced by the slower
waves of shorter !z . Thus, from a time-dependent stand point, the vertical wavelength of the packet appears
to decrease. However, at any fixed time, the vertical wavelength appears to increase with increasing altitude.
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We do not rule out that dissipation can decrease the vertical wavelength of a single frequency component
[e.g., Vadas and Fritts, 2005; Vadas, 2007]; however, it is not a dominant effect in determining the evolutions
of the packet spectra simulated here.

Most importantly, comparisons of the wave forcing types highlight how differently a wave packet can
behave depending upon how it is specified or defined. Assumption of a single central frequency, wave num-
ber, and packet location is insufficient to characterize a spectrally broad packet due to the strong dispersion
effects and selective filtering of the differing frequency components present. Conversely, in steady state
situations, a wave is constantly forced at a single frequency which is present throughout the domain. As
such, its dissipation altitude is much better described by treating it as having a single central frequency and
wave number.
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