4,595 research outputs found

    How accurate is density functional theory at predicting dipole moments? An assessment using a new database of 200 benchmark values

    Full text link
    Dipole moments are a simple, global measure of the accuracy of the electron density of a polar molecule. Dipole moments also affect the interactions of a molecule with other molecules as well as electric fields. To directly assess the accuracy of modern density functionals for calculating dipole moments, we have developed a database of 200 benchmark dipole moments, using coupled cluster theory through triple excitations, extrapolated to the complete basis set limit. This new database is used to assess the performance of 88 popular or recently developed density functionals. The results suggest that double hybrid functionals perform the best, yielding dipole moments within about 3.6-4.5% regularized RMS error versus the reference values---which is not very different from the 4% regularized RMS error produced by coupled cluster singles and doubles. Many hybrid functionals also perform quite well, generating regularized RMS errors in the 5-6% range. Some functionals however exhibit large outliers and local functionals in general perform less well than hybrids or double hybrids.Comment: Added several double hybrid functionals, most of which turned out to be better than any functional from Rungs 1-4 of Jacob's ladder and are actually competitive with CCS

    Water is not a Dynamic Polydisperse Branched Polymer

    Full text link
    The contributed paper by Naserifar and Goddard reports that their RexPoN water model under ambient conditions simulates liquid water as a dynamic polydisperse branched polymer, which they speculate explains the existence of the liquid-liquid critical point (LLCP) in the supercooled region. Our work addresses several serious factual errors and needless speculation in their paper about their interpretation of their model and its implication for the LLCP in supercooled water.Comment: Lette

    Development of an Advanced Force Field for Water using Variational Energy Decomposition Analysis

    Full text link
    Given the piecewise approach to modeling intermolecular interactions for force fields, they can be difficult to parameterize since they are fit to data like total energies that only indirectly connect to their separable functional forms. Furthermore, by neglecting certain types of molecular interactions such as charge penetration and charge transfer, most classical force fields must rely on, but do not always demonstrate, how cancellation of errors occurs among the remaining molecular interactions accounted for such as exchange repulsion, electrostatics, and polarization. In this work we present the first generation of the (many-body) MB-UCB force field that explicitly accounts for the decomposed molecular interactions commensurate with a variational energy decomposition analysis, including charge transfer, with force field design choices that reduce the computational expense of the MB-UCB potential while remaining accurate. We optimize parameters using only single water molecule and water cluster data up through pentamers, with no fitting to condensed phase data, and we demonstrate that high accuracy is maintained when the force field is subsequently validated against conformational energies of larger water cluster data sets, radial distribution functions of the liquid phase, and the temperature dependence of thermodynamic and transport water properties. We conclude that MB-UCB is comparable in performance to MB-Pol, but is less expensive and more transferable by eliminating the need to represent short-ranged interactions through large parameter fits to high order polynomials

    Hydration Water Dynamics and Instigation of Protein Structural Relaxation

    Get PDF
    The molecular mechanism of the solvent motion that is required to instigate the protein structural relaxation above a critical hydration level or transition temperature has yet to be determined. In this work we use quasi-elastic neutron scattering (QENS) and molecular dynamics simulation to investigate hydration water dynamics near a greatly simplified protein surface. We consider the hydration water dynamics near the completely deuterated N-acetyl-leucine-methylamide (NALMA) solute, a hydrophobic amino acid side chain attached to a polar blocked polypeptide backbone, as a function of concentration between 0.5M-2.0M, under ambient conditions. In this Communication, we focus our results of hydration dynamics near a model protein surface on the issue of how enzymatic activity is restored once a critical hydration level is reached, and provide a hypothesis for the molecular mechanism of the solvent motion that is required to trigger protein structural relaxation when above the hydration transition.Comment: 2 pages, 2 figures, Communicatio

    Orbital optimization in the perfect pairing hierarchy. Applications to full-valence calculations on linear polyacenes

    Full text link
    We describe the implementation of orbital optimization for the models in the perfect pairing hierarchy [Lehtola et al, J. Chem. Phys. 145, 134110 (2016)]. Orbital optimization, which is generally necessary to obtain reliable results, is pursued at perfect pairing (PP) and perfect quadruples (PQ) levels of theory for applications on linear polyacenes, which are believed to exhibit strong correlation in the {\pi} space. While local minima and {\sigma}-{\pi} symmetry breaking solutions were found for PP orbitals, no such problems were encountered for PQ orbitals. The PQ orbitals are used for single-point calculations at PP, PQ and perfect hextuples (PH) levels of theory, both only in the {\pi} subspace, as well as in the full {\sigma}{\pi} valence space. It is numerically demonstrated that the inclusion of single excitations is necessary also when optimized orbitals are used. PH is found to yield good agreement with previously published density matrix renormalization group (DMRG) data in the {\pi} space, capturing over 95% of the correlation energy. Full-valence calculations made possible by our novel, efficient code reveal that strong correlations are weaker when larger bases or active spaces are employed than in previous calculations. The largest full-valence PH calculations presented correspond to a (192e,192o) problem.Comment: 19 pages, 4 figure
    corecore