9,579 research outputs found
Temperature scaling, glassiness and stationarity in the Bak-Sneppen model
We show that the emergence of criticality in the locally-defined Bak-Sneppen
model corresponds to separation over a hierarchy of timescales. Near to the
critical point the model obeys scaling relations, with exponents which we
derive numerically for a one-dimensional system. We further describe how the
model can be related to the glass model of Bouchaud [{\em J. Phys. I France
{\bf 2}, 1705 (1992)}], and we use this insight to comment on the usual
assumption of stationarity in the Bak-Sneppen model. Finally, we propose a
general definition of self-organised criticality which is in partial agreement
with other recent definitions.Comment: 5 pages, 4 figures; differences to previous work clarified. To appear
in EPJ
The design and development of a spacecraft appendage tie down mechanism
The design and evolution is described of a spacecraft Appendage Tie Down Mechanism (ATDM). Particular emphasis is paid to the mechanical aspects of using dry lubricants to increase the efficiency of acme threads and worm gearing. The ATDM consists of five major components. These are a dc torque motor, a worm gear speed reducer, the tension bolt (or T-bolt), nut capture and centering jaws and the capture nut. In addition, there are several minor components such as limit switch assemblies and an antibackdrive mechanism which couples the drive motor to the worm shaft. A development model of the ATDM in various configurations was under test for some time. In its latest version, it has successfully completed thermal vacuum testing, vibration testing, and extended life testing
Computer program determines thermal environment and temperature history of lunar orbiting space vehicles
Program computes the thermal environment of a spacecraft in a lunar orbit. The quantities determined include the incident flux /solar and lunar emitted radiation/, total radiation absorbed by a surface, and the resulting surface temperature as a function of time and orbital position
The Anisotropic Bak-Sneppen model
The Bak-Sneppen model is shown to fall into a different universality class with the introduction of a preferred direction, mirroring the situation in spin systems. This is first demonstrated by numerical simulations and subsequently confirmed by analysis of the multitrait version of the model, which admits exact solutions in the extremes of zero and maximal anisotropy. For intermediate anisotropies, we show that the spatiotemporal evolution of the avalanche has a power law `tail' which passes through the system for any non-zero anisotropy but remains fixed for the isotropic case, thus explaining the crossover in behaviour. Finally, we identify the maximally anisotropic model which is more tractable and yet more generally applicable than the isotropic system
Geology of the Venus equatorial region from Pioneer Venus radar imaging
The surface characteristics and morphology of the equatorial region of Venus were first described by Masursky et al. who showed this part of the planet to be characterized by two topographic provinces, rolling plains and highlands, and more recently by Schaber who described and interpreted tectonic zones in the highlands. Using Pioneer Venus (PV) radar image data (15 deg S to 45 deg N), Senske and Head examined the distribution, characteristics, and deposits of individual volcanic features in the equatorial region, and in addition classified major equatorial physiographic and tectonic units on the basis of morphology, topographic signature, and radar properties derived from the PV data. Included in this classification are: plains (undivided), inter-highland tectonic zones, tectonically segmented linear highlands, upland rises, tectonic junctions, dark halo plains, and upland plateaus. In addition to the physiographic units, features interpreted as coronae and volcanic mountains have also been mapped. The latter four of the physiographic units along with features interpreted to be coronae
Rheological instability in a simple shear thickening model
We study the strain response to steady imposed stress in a spatially
homogeneous, scalar model for shear thickening, in which the local rate of
yielding \Gamma(l) of mesoscopic `elastic elements' is not monotonic in the
local strain l. Despite this, the macroscopic, steady-state flow curve (stress
vs. strain rate) is monotonic. However, for a broad class of \Gamma(l), the
response to steady stress is not in fact steady flow, but spontaneous
oscillation. We discuss this finding in relation to other theoretical and
experimental flow instabilities. Within the parameter ranges we studied, the
model does not exhibit rheo-chaos.Comment: 8 pages, 3 figs. Minor corrections made. To appear in Euro. Phys.
Let
Tessera terrain: Characteristics and models of origin
Tessera terrain consists of complexly deformed regions characterized by sets of ridges and valleys that intersect at angles ranging from orthogonal to oblique, and were first viewed in Venera 15/16 SAR data. Tesserae cover more area (approx. 15 percent of the area north of 30 deg N) than any of the other tectonic units mapped from the Venera data and are strongly concentrated in the region between longitudes 0 deg E and 150 deg E. Tessera terrain is concentrated between a proposed center of crustal extension and divergence in Aphrodite and a region of intense deformation, crustal convergence, and orogenesis in western Ishtar Terra. Thus, the tectonic processes responsible for tesserae are an important part of Venus tectonics. As part of an effort to understand the formation and evolution of this unusual terrain type, the basic characteristics of the tesserae were compared to the predictions made by a number of tectonic models. The basic characteristics of tessera terrain are described and the models and some of their basic predictions are briefly discussed
Robust propagation direction of stresses in a minimal granular packing
By employing the adaptive network simulation method, we demonstrate that the
ensemble-averaged stress caused by a local force for packings of frictionless
rigid beads is concentrated along rays whose slope is consistent with unity:
forces propagate along lines at 45 degrees to the horizontal or vertical. This
slope is shown to be independent of polydispersity or the degree to which the
system is sheared. Further confirmation of this result comes from fitting the
components of the stress tensor to the null stress constitutive equation. The
magnitude of the response is also shown to fall off with the -1/2 power of
distance. We argue that our findings are a natural consequence of a system that
preserves its volume under small perturbations.Comment: 8 pages, 6 figures. Some extra clarification and minor improvements.
To appear in EPJ-
Evidence for inbreeding depression in a species with limited opportunity for maternal effects
It is often assumed that mating with close relatives reduces offspring fitness. In such cases, reduced offspring fitness may arise from inbreeding depression (i.e., genetic effects of elevated homozygosity) or from post-mating maternal investment. This can be due to a reduction in female investment after mating with genetically incompatible males ("differential allocation") or compensation for incompatibility ("reproductive compensation"). Here, we looked at the effects of mating with relatives on offspring fitness in mosquitofish, Gambusia holbrooki. In this species, females are assumed to be nonplacental and to allocate resources to eggs before fertilization, limiting differential allocation. We looked at the effects of mating with a brother or with an unrelated male on brood size, offspring size, gestation period, and early offspring growth. Mating with a relative reduced the number of offspring at birth, but there was no difference in the likelihood of breeding, gestation time, nor in the size or growth of these offspring. We suggest that due to limited potential for maternal effects to influence these traits that any reduction in offspring fitness, or lack thereof, can be explained by inbreeding depression rather than by maternal effects. We highlight the importance of considering the potential role of maternal effects when studying inbreeding depression and encourage further studies in other Poeciliid species with different degrees of placentation to test whether maternal effects mask or amplify any genetic effects of mating with relatives.This work was supported bythe Australian Research Council (DP120100339). R.V.-T. is supported by fellowships from Consejo Nacion-al de Ciencia y Tecnologıa-Mexico and the ResearchSchool of Biology
Biomechanical Analysis of Infectious Biofilms.
The removal of infectious biofilms from tissues or implanted devices and their transmission through fluid transport systems depends in part of the mechanical properties of their polymeric matrix. Linking the various physical and chemical microscopic interactions to macroscopic deformation and failure modes promises to unveil design principles for novel therapeutic strategies targeting biofilm eradication, and provide a predictive capability to accelerate the development of devices, water lines, etc, that minimise microbial dispersal. Here, our current understanding of biofilm mechanics is appraised from the perspective of biophysics , with an emphasis on constitutive modelling that has been highly successful in soft matter. Fitting rheometric data to viscoelastic models has quantified linear and nonlinear stress relaxation mechanisms, how they vary between species and environments, and how candidate chemical treatments alter the mechanical response. The rich interplay between growth, mechanics and hydrodynamics is just becoming amenable to computational modelling and promises to provide unprecedented characterisation of infectious biofilms in their native state
- …