110 research outputs found

    Remote reef cryptobenthic diversity: Integrating autonomous reef monitoring structures and in situ environmental parameters

    Get PDF
    Coral reef sessile organisms inhabiting cryptic spaces and cavities of the reef matrix perform vital and varied functional roles but are often understudied in comparison to those on exposed surfaces. Here, we assess the composition of cryptobenthic taxa from three remote tropical reef sites (Central Indian Ocean) alongside a suite of in situ environmental parameters to determine if, or how, significant patterns of diversity are shaped by local abiotic factors. To achieve this, we carried out a point-count analysis of autonomous reef monitoring structure (ARMS) plate images and employed in situ instrumentation to recover long-term (12 months) profiles of flow velocity, wave heights, temperature, dissolved oxygen, and salinity, and short-term (3 weeks) profiles of light and pH. We recovered distinct environmental profiles between sampling sites and observed that ocean-facing reefs experienced frequent but short-lived cooling internal wave events and that these were key in shaping in situ temperature variability. By comparing temperature and wave height profiles recovered using in situ loggers with ex situ models, we discovered that global satellite products either failed to recover site-specific profiles or both over- and underestimated actual in situ conditions. We found that site choice and recruitment plate face (top or bottom) significantly impacted the percentage cover of bryozoans, gastropods, soft and calcified tube worms, as well as crustose coralline algae (CCA) and fleshy red, brown, and green encrusting macroalgae on ARMS. We observed significant correlations between the abundance of bryozoans, CCA, and colonial tunicates with lower mean temperature and higher mean dissolved oxygen profiles observed across sites. Red and brown encrusting macroalgae abundance correlated significantly with medium-to-high flow velocities and wave height profiles, as well as higher pH and dissolved oxygen. This study provides the first insight into cryptobenthic communities in the Chagos Archipelago marine-protected area and adds to our limited understanding of tropical reef sessile communities and their associations with environmental parameters in this region. With climate change accelerating the decline of reef ecosystems, integrating analyses of cryptobenthic organisms and in situ physicochemical factors are needed to understand how reef communities, if any, may withstand the impacts of climate change

    A tenuis relationship: traditional taxonomy obscures systematics and biogeography of the ‘Acropora tenuis’ (Scleractinia: Acroporidae) species complex

    Get PDF
    Molecular phylogenetics has fundamentally altered our understanding of the taxonomy, systematics and biogeography of corals. Recently developed phylogenomic techniques have started to resolve species-level relationships in the diverse and ecologically important genus Acropora, providing a path to resolve the taxonomy of this notoriously problematic group. We used a targeted capture dataset (2032 loci) to investigate systematic relationships within an Acropora clade containing the putatively widespread species Acropora tenuis and its relatives. Using maximum likelihood phylogenies and genetic clustering of single nucleotide polymorphisms from specimens, including topotypes, collected across the Indo-Pacific, we show ≥ 11 distinct lineages in the clade, only four of which correspond to currently accepted species. Based on molecular, morphological and geographical evidence, we describe two new species; Acropora rongoi n. sp. and Acropora tenuissima n. sp. and remove five additional nominal species from synonymy. Systematic relationships revealed by our molecular phylogeny are incongruent with traditional morphological taxonomy and demonstrate that characters traditionally used to delineate species boundaries and infer evolutionary history are homoplasies. Furthermore, we show that species within this clade have much smaller geographical ranges and, consequently, population sizes than currently thought, a finding with profound implications for conservation and management of reef corals

    Excess Synaptojanin 1 Contributes to Place Cell Dysfunction and Memory Deficits in the Aging Hippocampus in Three Types of Alzheimer’s Disease

    Get PDF
    The phosphoinositide phosphatase synaptojanin 1 (SYNJ1) is a key regulator of synaptic function. We first tested whether SYNJ1 contributes to phenotypic variations in familial Alzheimer’s disease (FAD) and show that SYNJ1 polymorphisms are associated with age of onset in both early- and late-onset human FAD cohorts. We then interrogated whether SYNJ1 levels could directly affect memory. We show that increased SYNJ1 levels in autopsy brains from adults with Down syndrome (DS/AD) are inversely correlated with synaptophysin levels, a direct readout of synaptic integrity. We further report age-dependent cognitive decline in a mouse model overexpressing murine Synj1 to the levels observed in human sporadic AD, triggered through hippocampal hyperexcitability and defects in the spatial reproducibility of place fields. Taken together, our findings suggest that SYNJ1 contributes to memory deficits in the aging hippocampus in all forms of AD

    Opportunities, barriers, and recommendations in down syndrome research

    Get PDF
    Recent advances in medical care have increased life expectancy and improved the quality of life for people with Down syndrome (DS). These advances are the result of both pre-clinical and clinical research but much about DS is still poorly understood. In 2020, the NIH announced their plan to update their DS research plan and requested input from the scientific and advocacy community. The National Down Syndrome Society (NDSS) and the LuMind IDSC Foundation worked together with scientific and medical experts to develop recommendations for the NIH research plan. NDSS and LuMind IDSC assembled over 50 experts across multiple disciplines and organized them in eleven working groups focused on specific issues for people with DS. This review article summarizes the research gaps and recommendations that have the potential to improve the health and quality of life for people with DS within the next decade. This review highlights many of the scientific gaps that exist in DS research. Based on these gaps, a multidisciplinary group of DS experts has made recommendations to advance DS research. This paper may also aid policymakers and the DS community to build a comprehensive national DS research strategy
    corecore