11,790 research outputs found

    Temperature scaling, glassiness and stationarity in the Bak-Sneppen model

    Full text link
    We show that the emergence of criticality in the locally-defined Bak-Sneppen model corresponds to separation over a hierarchy of timescales. Near to the critical point the model obeys scaling relations, with exponents which we derive numerically for a one-dimensional system. We further describe how the model can be related to the glass model of Bouchaud [{\em J. Phys. I France {\bf 2}, 1705 (1992)}], and we use this insight to comment on the usual assumption of stationarity in the Bak-Sneppen model. Finally, we propose a general definition of self-organised criticality which is in partial agreement with other recent definitions.Comment: 5 pages, 4 figures; differences to previous work clarified. To appear in EPJ

    The Anisotropic Bak-Sneppen model

    Get PDF
    The Bak-Sneppen model is shown to fall into a different universality class with the introduction of a preferred direction, mirroring the situation in spin systems. This is first demonstrated by numerical simulations and subsequently confirmed by analysis of the multitrait version of the model, which admits exact solutions in the extremes of zero and maximal anisotropy. For intermediate anisotropies, we show that the spatiotemporal evolution of the avalanche has a power law `tail' which passes through the system for any non-zero anisotropy but remains fixed for the isotropic case, thus explaining the crossover in behaviour. Finally, we identify the maximally anisotropic model which is more tractable and yet more generally applicable than the isotropic system

    Rheological instability in a simple shear thickening model

    Full text link
    We study the strain response to steady imposed stress in a spatially homogeneous, scalar model for shear thickening, in which the local rate of yielding \Gamma(l) of mesoscopic `elastic elements' is not monotonic in the local strain l. Despite this, the macroscopic, steady-state flow curve (stress vs. strain rate) is monotonic. However, for a broad class of \Gamma(l), the response to steady stress is not in fact steady flow, but spontaneous oscillation. We discuss this finding in relation to other theoretical and experimental flow instabilities. Within the parameter ranges we studied, the model does not exhibit rheo-chaos.Comment: 8 pages, 3 figs. Minor corrections made. To appear in Euro. Phys. Let

    Robust propagation direction of stresses in a minimal granular packing

    Full text link
    By employing the adaptive network simulation method, we demonstrate that the ensemble-averaged stress caused by a local force for packings of frictionless rigid beads is concentrated along rays whose slope is consistent with unity: forces propagate along lines at 45 degrees to the horizontal or vertical. This slope is shown to be independent of polydispersity or the degree to which the system is sheared. Further confirmation of this result comes from fitting the components of the stress tensor to the null stress constitutive equation. The magnitude of the response is also shown to fall off with the -1/2 power of distance. We argue that our findings are a natural consequence of a system that preserves its volume under small perturbations.Comment: 8 pages, 6 figures. Some extra clarification and minor improvements. To appear in EPJ-

    Development of an Advanced Force Field for Water using Variational Energy Decomposition Analysis

    Full text link
    Given the piecewise approach to modeling intermolecular interactions for force fields, they can be difficult to parameterize since they are fit to data like total energies that only indirectly connect to their separable functional forms. Furthermore, by neglecting certain types of molecular interactions such as charge penetration and charge transfer, most classical force fields must rely on, but do not always demonstrate, how cancellation of errors occurs among the remaining molecular interactions accounted for such as exchange repulsion, electrostatics, and polarization. In this work we present the first generation of the (many-body) MB-UCB force field that explicitly accounts for the decomposed molecular interactions commensurate with a variational energy decomposition analysis, including charge transfer, with force field design choices that reduce the computational expense of the MB-UCB potential while remaining accurate. We optimize parameters using only single water molecule and water cluster data up through pentamers, with no fitting to condensed phase data, and we demonstrate that high accuracy is maintained when the force field is subsequently validated against conformational energies of larger water cluster data sets, radial distribution functions of the liquid phase, and the temperature dependence of thermodynamic and transport water properties. We conclude that MB-UCB is comparable in performance to MB-Pol, but is less expensive and more transferable by eliminating the need to represent short-ranged interactions through large parameter fits to high order polynomials

    Deformation of crosslinked semiflexible polymer networks

    Full text link
    Networks of filamentous proteins play a crucial role in cell mechanics. These cytoskeletal networks, together with various crosslinking and other associated proteins largely determine the (visco)elastic response of cells. In this letter we study a model system of crosslinked, stiff filaments in order to explore the connection between the microstructure under strain and the macroscopic response of cytoskeletal networks. We find two distinct regimes as a function primarily of crosslink density and filament rigidity: one characterized by affine deformation and one by non-affine deformation. We characterize the crossover between these two.Comment: Typos fixed and some technical details clarified. To appear in Phys. Rev. Let

    The validity of capillary blood sampling in the determination of human growth hormone concentration during exercise in men

    Get PDF
    This is an open access article - Copyright © 2004 BMJ Publishing Group LtdBACKGROUND: Studies measuring human growth hormone (hGH) in blood during exercise have mainly used venous sampling. The invasive nature of this procedure makes evaluation of hGH impossible in various exercise environments. OBJECTIVE: To determine whether capillary sampling could offer an alternative sampling method. METHODS: Capillary and venous blood samples were collected for determination of hGH at the end of each exercise stage during an incremental exercise test in 16 male club level competitive cyclists (mean (SD) age 30.8 (8.0) years, body mass 72.2 (7.1) kg, body fat 12.9 (3.5)%, peak oxygen consumption 4.18 (0.46) l⋅min−1). Linear regression, from a plot of venous v capillary blood hGH concentration, showed a correlation coefficient of r = 0.986 (p<0.001). When geometric means and log transformations were used, a coefficient of variation of 14.2% was demonstrated between venous and capillary flow for hGH concentration. The mean ratio limits of agreement were 0.62 (1.72)—that is, 95% of the ratios were contained between 0.36 and 1.07, with a mean of 0.62. CONCLUSIONS: Capillary blood sampling is an acceptable alternative to venous sampling for determining hGH concentration during rest and exercise. Sample sites should not be used interchangeably: one site should be chosen and its use standardised
    • …
    corecore