91 research outputs found

    Phenomenology of the B3LτB - 3 L_\tau Gauge Boson

    Full text link
    Assuming the existence of a gauge boson XX which couples to B3LτB - 3 L_\tau, we discuss the present experimental constraints on gXg_X and mXm_X from Zl+lZ \to l^+ l^- and ZfˉfX (f=q,ντ,τ)Z \to \bar f f X~(f = q, \nu_\tau, \tau). We also discuss the discovery potential of XX at hadron colliders through its decay into τ+τ\tau^+ \tau^- pairs. In the scenario where all three charged leptons (and their neutrinos) mix, lepton flavor nonconservation through XX becomes possible and provides another experimental probe into this hypothesis.Comment: 19 pages, LaTeX, including 4 figure

    Radiative Two Loop Inverse Seesaw and Dark Matter

    Full text link
    Seesaw mechanism provides a natural explanation of light neutrino masses through suppression of heavy seesaw scale. In inverse seesaw models the seesaw scale can be much lower than that in the usual seesaw models. If terms inducing seesaw masses are further induced by loop corrections, the seesaw scale can be lowered to be in the range probed by experiments at the LHC without fine tuning. In this paper we construct models in which inverse seesaw neutrino masses are generated at two loop level. These models also naturally have dark matter candidates. Although the recent data from Xenon100 put stringent constraint on the models, they can be consistent with data on neutrino masses, mixing, dark matter relic density and direct detection. These models also have some interesting experimental signatures for collider and flavor physics.Comment: RevTex 14 pages 3 figures. Several references adde

    Symmetries of the Standard Model without and with a Right-Handed Neutrino

    Get PDF
    Given the particle content of the standard model without and with a right-handed neutrino, the requirement that all anomalies cancel singles out a set of possible global symmetries which can be gauged. I review this topic and propose a new gauge symmetry B - 3L_tau in the context of the minimal standard model consisting of the usual three families of quarks and leptons plus just one nu_R. The many interesting phenomenological consequences of this hypothesis are briefly discussed.Comment: 7 pages, no figure, latex, sprocl.sty, talk at the Fifth Workshop on High Energy Physics Phenomenology, Pune, Jan 9

    Finite flavour groups of fermions

    Full text link
    We present an overview of the theory of finite groups, with regard to their application as flavour symmetries in particle physics. In a general part, we discuss useful theorems concerning group structure, conjugacy classes, representations and character tables. In a specialized part, we attempt to give a fairly comprehensive review of finite subgroups of SO(3) and SU(3), in which we apply and illustrate the general theory. Moreover, we also provide a concise description of the symmetric and alternating groups and comment on the relationship between finite subgroups of U(3) and finite subgroups of SU(3). Though in this review we give a detailed description of a wide range of finite groups, the main focus is on the methods which allow the exploration of their different aspects.Comment: 89 pages, 6 figures, some references added, rearrangement of part of the material, section on SU(3) subgroups substantially extended, some minor revisions. Version for publication in J. Phys. A. Table 12 corrected to match eq.(256), table 14 and eq.(314) corrected to match the 2-dimensional irreps defined on p.6

    Deviation from tri-bimaximal mixings in two types of inverted hierarchical neutrino mass models

    Full text link
    An attempt is made to explore the possibility for deviations of solar mixing angle (θ12\theta_{12}) from tri-bimaximal mixings, without sacrificing the predictions of maximal atmospheric mixing angle (θ23=π/4\theta_{23}=\pi/4) and zero reactor angle (θ13=0\theta_{13}=0). We find that the above conjecture can be automatically realised in the inverted hierarchical neutrino mass model having 2-3 symmetry, in the basis where charged lepton mass matrix is diagonal. For the observed ranges of m212\bigtriangleup m^2_{21} and \bigtriangleup m^2_{23], we calculate the predictions on tan2θ12=0.5,0.45,0.35\tan^2\theta_{12}=0.5, 0.45, 0.35 for different input values of the parameters in the neutrino mass matrix. We also observe a possible crossing over from one type of inverted hierarchical model having same CP parity (Type-IHA) to other type having opposite CP parity (Type-IHB). Such neutrino mass matrices can be obtained from the canonical seesaw formula using diagonal form of Dirac neutrino mass matrix and non-diagonal texture of right-handed Majorana mass matrix, and may have important implications in model building using discrete as well as non-abelian symmetry groups.Comment: 13 pages, 7 figure

    Neutrino Masses with "Zero Sum" Condition: mν1+mν2+mν3=0m_{\nu_1} + m_{\nu_2} + m_{\nu_3} = 0

    Full text link
    It is well known that the neutrino mass matrix contains more parameters than experimentalists can hope to measure in the foreseeable future even if we impose CP invariance. Thus, various authors have proposed ansatzes to restrict the form of the neutrino mass matrix further. Here we propose that mν1+mν2+mν3=0m_{\nu_1} + m_{\nu_2} + m_{\nu_3} = 0; this ``zero sum'' condition can occur in certain class of models, such as models whose neutrino mass matrix can be expressed as commutator of two matrices. With this condition, the absolute neutrino mass can be obtained in terms of the mass-squared differences. When combined with the accumulated experimental data this condition predicts two types of mass hierarchies, with one of them characterized by mν32mν12mν20.063m_{\nu_3} \approx -2m_{\nu_1} \approx -2 m_{\nu_2} \approx 0.063 eV, and the other by mν1mν20.054m_{\nu_1} \approx -m_{\nu_2} \approx 0.054 eV and mν30.0064m_{\nu_3} \approx 0.0064 eV. The mass ranges predicted is just below the cosmological upper bound of 0.23 eV from recent WMAP data and can be probed in the near future. We also point out some implications for direct laboratory measurement of neutrino masses, and the neutrino mass matrix.Comment: Latex 12 pages. No figures. New references adde

    Neutrino Mixing and Neutrino Telescopes

    Get PDF
    Measuring flux ratios of ultra-high energy neutrinos is an alternative method to determine the neutrino mixing angles and the CP phase delta. We conduct a systematic analysis of the neutrino mixing probabilities and of various flux ratios measurable at neutrino telescopes. The considered cases are neutrinos from pion, neutron and muon-damped sources. Explicit formulae in case of mu-tau symmetry and its special case tri-bimaximal mixing are obtained, and the leading corrections due to non-zero theta_{13} and non-maximal theta_{23} are given. The first order correction is universal as it appears in basically all ratios. We study in detail its dependence on theta_{13}, theta_{23} and the CP phase, finding that the dependence on theta_{23} is strongest. The flavor compositions for the considered neutrino sources are evaluated in terms of this correction. A measurement of a flux ratio is a clean measurement of the universal correction (and therefore of theta_{13}, theta_{23} and delta) if the zeroth order ratio does not depend on theta_{12}. This favors pion sources over the other cases, which in turn are good candidates to probe theta_{12}. The only situations in which the universal correction does not appear are certain ratios in case of a neutron and muon-damped source, which depend mainly on theta_{12} and receive only quadratic corrections from the other parameters. We further show that there are only two independent neutrino oscillation probabilities, give the allowed ranges of the considered flux ratios and of all probabilities, and show that none of the latter can be zero or one.Comment: 29 pages, 8 figures. Minor changes, to appear in JCA

    An A4 flavor model for quarks and leptons in warped geometry

    Get PDF
    We propose a spontaneous A4 flavor symmetry breaking scheme implemented in a warped extra dimensional setup to explain the observed pattern of quark and lepton masses and mixings. The main advantages of this choice are the explanation of fermion mass hierarchies by wave function overlaps, the emergence of tribimaximal neutrino mixing and zero quark mixing at the leading order and the absence of tree-level gauge mediated flavor violations. Quark mixing is induced by the presence of bulk flavons, which allow for cross-brane interactions and a cross-talk between the quark and neutrino sectors, realizing the spontaneous symmetry breaking pattern A4 --> nothing first proposed in [X.G.\,He, Y.Y.\,Keum, R.R.\,Volkas, JHEP{0604}, 039 (2006)]. We show that the observed quark mixing pattern can be explained in a rather economical way, including the CP violating phase, with leading order cross-interactions, while the observed difference between the smallest CKM entries V_{ub} and V_{td} must arise from higher order corrections. We briefly discuss bounds on the Kaluza-Klein scale implied by flavor changing neutral current processes in our model and show that the residual little CP problem is milder than in flavor anarchic models.Comment: 34 pages, 2 figures; version published in JHE

    The Interplay Between GUT and Flavour Symmetries in a Pati-Salam x S4 Model

    Get PDF
    Both Grand Unified symmetries and discrete flavour symmetries are appealing ways to describe apparent structures in the gauge and flavour sectors of the Standard Model. Both symmetries put constraints on the high energy behaviour of the theory. This can give rise to unexpected interplay when building models that possess both symmetries. We investigate on the possibility to combine a Pati-Salam model with the discrete flavour symmetry S4S_4 that gives rise to quark-lepton complementarity. Under appropriate assumptions at the GUT scale, the model reproduces fermion masses and mixings both in the quark and in the lepton sectors. We show that in particular the Higgs sector and the running Yukawa couplings are strongly affected by the combined constraints of the Grand Unified and family symmetries. This in turn reduces the phenomenologically viable parameter space, with high energy mass scales confined to a small region and some parameters in the neutrino sector slightly unnatural. In the allowed regions, we can reproduce the quark masses and the CKM matrix. In the lepton sector, we reproduce the charged lepton masses, including bottom-tau unification and the Georgi-Jarlskog relation as well as the two known angles of the PMNS matrix. The neutrino mass spectrum can present a normal or an inverse hierarchy, and only allowing the neutrino parameters to spread into a range of values between λ2\lambda^{-2} and λ2\lambda^2, with λ0.2\lambda\simeq0.2. Finally, our model suggests that the reactor mixing angle is close to its current experimental bound.Comment: 62 pages, 4 figures; references added, version accepted for publication in JHE

    Towards Minimal S4 Lepton Flavor Model

    Get PDF
    We study lepton flavor models with the S4S_4 flavor symmetry. We construct simple models with smaller numbers of flavon fields and free parameters, such that we have predictions among lepton masses and mixing angles. The model with a S4S_4 triplet flavon is not realistic, but we can construct realistic models with two triplet flavons, or one triplet and one doublet flavons.Comment: 18 pages, 4 figures, references are adde
    corecore