1,450 research outputs found
Millimeter Wave Communications with Reconfigurable Antennas
The highly sparse nature of propagation channels and the restricted use of
radio frequency (RF) chains at transceivers limit the performance of millimeter
wave (mmWave) multiple-input multiple-output (MIMO) systems. Introducing
reconfigurable antennas to mmWave can offer an additional degree of freedom on
designing mmWave MIMO systems. This paper provides a theoretical framework for
studying the mmWave MIMO with reconfigurable antennas. We present an
architecture of reconfigurable mmWave MIMO with beamspace hybrid analog-digital
beamformers and reconfigurable antennas at both the transmitter and the
receiver. We show that employing reconfigurable antennas can provide throughput
gain for the mmWave MIMO. We derive the expression for the average throughput
gain of using reconfigurable antennas, and further simplify the expression by
considering the case of large number of reconfiguration states. In addition, we
propose a low-complexity algorithm for the reconfiguration state and beam
selection, which achieves nearly the same throughput performance as the optimal
selection of reconfiguration state and beams by exhaustive search.Comment: presented at IEEE ICC 201
Achieving secrecy without knowing the number of eavesdropper antennas
The existing research on physical layer security commonly assumes the number
of eavesdropper antennas to be known. Although this assumption allows one to
easily compute the achievable secrecy rate, it can hardly be realized in
practice. In this paper, we provide an innovative approach to study secure
communication systems without knowing the number of eavesdropper antennas by
introducing the concept of spatial constraint into physical layer security.
Specifically, the eavesdropper is assumed to have a limited spatial region to
place (possibly an infinite number of) antennas. From a practical point of
view, knowing the spatial constraint of the eavesdropper is much easier than
knowing the number of eavesdropper antennas. We derive the achievable secrecy
rates of the spatially-constrained system with and without friendly jamming. We
show that a non-zero secrecy rate is achievable with the help of a friendly
jammer, even if the eavesdropper places an infinite number of antennas in its
spatial region. Furthermore, we find that the achievable secrecy rate does not
monotonically increase with the jamming power, and hence, we obtain the
closed-form solution of the optimal jamming power that maximizes the secrecy
rate.Comment: IEEE transactions on wireless communications, accepted to appea
Covert Wireless Communication with a Poisson Field of Interferers
In this paper, we study covert communication in wireless networks consisting
of a transmitter, Alice, an intended receiver, Bob, a warden, Willie, and a
Poisson field of interferers. Bob and Willie are subject to uncertain shot
noise due to the ambient signals from interferers in the network. With the aid
of stochastic geometry, we analyze the throughput of the covert communication
between Alice and Bob subject to given requirements on the covertness against
Willie and the reliability of decoding at Bob. We consider non-fading and
fading channels. We analytically obtain interesting findings on the impacts of
the density and the transmit power of the concurrent interferers on the covert
throughput. That is, the density and the transmit power of the interferers have
no impact on the covert throughput as long as the network stays in the
interference-limited regime, for both the non-fading and the fading cases. When
the interference is sufficiently small and comparable with the receiver noise,
the covert throughput increases as the density or the transmit power of the
concurrent interferers increases
Coverage Analysis of Relay Assisted Millimeter Wave Cellular Networks with Spatial Correlation
We propose a novel analytical framework for evaluating the coverage
performance of a millimeter wave (mmWave) cellular network where idle user
equipments (UEs) act as relays. In this network, the base station (BS) adopts
either the direct mode to transmit to the destination UE, or the relay mode if
the direct mode fails, where the BS transmits to the relay UE and then the
relay UE transmits to the destination UE. To address the drastic rotational
movements of destination UEs in practice, we propose to adopt selection
combining at destination UEs. New expression is derived for the
signal-to-interference-plus-noise ratio (SINR) coverage probability of the
network. Using numerical results, we first demonstrate the accuracy of our new
expression. Then we show that ignoring spatial correlation, which has been
commonly adopted in the literature, leads to severe overestimation of the SINR
coverage probability. Furthermore, we show that introducing relays into a
mmWave cellular network vastly improves the coverage performance. In addition,
we show that the optimal BS density maximizing the SINR coverage probability
can be determined by using our analysis
Secure on-off transmission design with channel estimation errors
Physical layer security has recently been regarded
as an emerging technique to complement and improve the
communication security in future wireless networks. The current
research and development in physical layer security are often
based on the ideal assumption of perfect channel knowledge or
the capability of variable-rate transmissions. In this paper, we
study the secure transmission design in more practical scenarios
by considering channel estimation errors at the receiver and
investigating both fixed-rate and variable-rate transmissions.
Assuming quasi-static fading channels, we design secure on-off
transmission schemes to maximize the throughput subject to
a constraint on secrecy outage probability. For systems with
given and fixed encoding rates, we show how the optimal on-off
transmission thresholds and the achievable throughput vary with
the amount of knowledge on the eavesdropper’s channel. In
particular, our design covers the interesting case where the
eavesdropper also uses the pilots sent from the transmitter to
obtain imperfect channel estimation. An interesting observation
is that using too much pilot power can harm the throughput
of secure transmission if both the legitimate receiver and the
eavesdropper have channel estimation errors, while the secure
transmission always benefits from increasing pilot power when
only the legitimate receiver has channel estimation errors but
not the eavesdropper. When the encoding rates are controllable
parameters to design, we further derive both a non-adaptive
and an adaptive rate transmission schemes by jointly optimizing
the encoding rates and the on-off transmission thresholds to
maximize the throughput of secure transmissions
- …