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Abstract—Physical layer security has recently been regarded
as an emerging technique to complement and improve the
communication security in future wireless networks. The current
research and development in physical layer security is often
based on the ideal assumption of perfect channel knowledge or
the capability of variable-rate transmissions. In this work, we
study the secure transmission design in more practical scenarios
by considering channel estimation errors at the receiver and
investigating both fixed-rate and variable-rate transmissions.
Assuming quasi-static fading channels, we design secure on-
off transmission schemes to maximize the throughput subject
to a constraint on secrecy outage probability. For systems with
given and fixed encoding rates, we show how the optimal on-
off transmission thresholds and the achievable throughputvary
with the amount of knowledge on the eavesdropper’s channel.
In particular, our design covers the interesting case wherethe
eavesdropper also uses the pilots sent from the transmitterto
obtain imperfect channel estimation. An interesting observation
is that using too much pilot power can harm the throughput
of secure transmission if both the legitimate receiver and the
eavesdropper have channel estimation errors, while the secure
transmission always benefits from increasing pilot power when
only the legitimate receiver has channel estimation errorsbut
not the eavesdropper. When the encoding rates are controllable
parameters to design, we further derive both a non-adaptive
and an adaptive rate transmission schemes by jointly optimizing
the encoding rates and the on-off transmission thresholds to
maximize the throughput of secure transmissions.

Index Terms—Physical layer security, channel estimation error,
on-off transmission, secrecy outage probability.

I. I NTRODUCTION

T HE broadcast nature of wireless networks makes com-
munication security a critical issue, especially when

the information transmitted is important and private. Cryp-
tographic technologies are traditionally used to increasethe
wireless communication security. On the other hand, physical
layer security has been widely regarded as a complement
to cryptographic technologies in future networks. Wyner’s
pioneering work introduced the wiretap channel model as a
basic framework for physical layer security [2], which was
extended to broadcast channels with confidential messages
described by Csiszár and Körner in [3]. These early works
have led to a significant amount of recent research activities
taking the fading characteristics of wireless channels into

B. He and X. Zhou are with the Research School of Engineering,the
Australian National University, Australia (e-mail: biao.he@anu.edu.au, xi-
angyun.zhou@anu.edu.au).

The material in this paper was presented in part at Australian Communica-
tions Theory Workshop (AusCTW), Adelaide, Australia, Jan.2013 [1]. This
work was supported by the Australian Research Council’s Discovery Projects
funding scheme (project no. DP110102548).

account. One of the key features in providing physical layer
security is that the channel state information (CSI) of both
the legitimate receiver and the eavesdropper often needs to
be known by the transmitter to enable secure encoding and
advanced signaling. In recent years, increasing attentionhas
been paid to the impact of the uncertainty in the CSI of
both legitimate receiver and eavesdropper’s channels at the
transmitter, e.g., [4–8].

Usually, the CSI is obtained at the receiver by channel
estimation during pilot transmission. Then, a feedback link (if
available) is used to send the CSI to the transmitter. Hence,
the accuracy of the channel estimation at the receiver affects
the quality of CSI at the transmitter. In the literature of
physical layer security, most existing studies assumed that the
legitimate receiver has perfect channel estimation. Clearly, this
assumption is not very practical, since the channel estimation
problem generally is not error-free. In principle, the channel
estimation error exists at both the legitimate receiver andthe
eavesdropper. Assuming perfect estimation at the eavesdropper
is more reasonable from the secure transmission design point
of view, since it is often difficult or impossible for the
transmitter to know the accuracy of the eavesdropper’s channel
estimate. Nevertheless, in scenarios where the eavesdropper is
just an ordinary user of the network whose performance and
other information can be tracked by the transmitter, e.g., [9–
11], the consideration of imperfect channel estimation at the
eavesdropper becomes relevant. Previous works that study the
physical layer security problems considering the imperfect
channel estimation at the receiver can be found in [12–14],
where [12, 13] considered the channel estimation error at the
legitimate receiver and [14] considered the channel estimation
error at both the legitimate receiver and the eavesdropper.

Specifically, Taylor et al. presented the impact of the
legitimate receiver’s channel estimation error on the perfor-
mance of an eigenvector-based jamming technique in [12].
Their research showed that the ergodic secrecy rate provided
by the jamming technique decreases rapidly as the channel
estimation error increases. Zhou and McKay analyzed the
optimal power allocation of the artificial noise for the secure
transmission considering the impact of imperfect CSI at the
legitimate receiver in [13]. They found that it is wise to create
more artificial noise by compromising on the transmit power
of information-bearing signals when the CSI is imperfectly
obtained. Liu et al. [14] adopted the secrecy beamforming
scheme to investigate the joint design of training and data
transmission signals for wiretap channels. They derived the
ergodic secrecy rate for practical systems with imperfect
channel estimations at both the legitimate receiver and the
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eavesdropper, and found the optimal tradeoff between the en-
ergy used for training and data signals based on the achievable
ergodic secrecy rate.

The aforementioned works in [12–14] all used the ergodic
secrecy rate to characterize the performance limits of systems.
The ergodic secrecy rate is an appropriate secrecy measure for
systems in which the encoded messages span sufficient channel
realizations to capture the ergodic features of the fading chan-
nel [15]. In addition, the works in [12–14] implicitly assumed
variable-rate transmission strategies where the encodingrates
are adaptively chosen according to the instantaneous channel
gains1. In practice, communication systems sometimes prefer
non-adaptive rate transmission to reduce complexity and ap-
plications like video streams in multimedia often require fixed
encoding rates2. Thus, variable-rate transmission strategies are
not always feasible.

In this paper, we study the secure on-off transmission
design with channel estimation errors, and adopt an outage-
based characterization as the security performance measure-
ment. Here the secure on-off transmission scheme is adopted
from [15, 16] and is essential to control the secrecy perfor-
mance for systems with fixed encoding rates.

The main contributions of this paper are summarized as
follows.

1) We consider quasi-static slow fading channels and use an
outage-based formulation to study the secure transmission
design with channel estimation errors at the receiver side.
This is different from the previous works in [12–14]
which used the ergodic secrecy rate as the performance
measure.

2) We develop throughput-maximizing secure on-off trans-
mission schemes with fixed encoding rates for different
scenarios distinguished on whether or not there is channel
estimation error at the eavesdropper, and whether or not
the transmitter has the estimated channel quality fed
back from the eavesdropper. Our analytical and numerical
results show how the optimal design and the achievable
throughput vary with the change in the channel knowl-
edge assumptions.

3) For systems in which the encoding rates are controllable
parameters to design, we jointly optimize the encoding
rates and the on-off transmission thresholds to maximize
the throughput of secure transmissions. Both non-adaptive
and adaptive rate transmissions are considered. Note that
none of the previous works on physical layer security
considering the channel estimation error has explicitly in-
volved the rate parameters as part of the design problem.

4) We also analyze how the training (pilot) power affects
the achievable throughput of secure transmissions, since
the accuracy of the channel estimation depends on the

1The system achieving the ergodic secrecy rate has the implicit assumption
of the variable-rate transmission, which is very differentfrom traditional
ergodic fading scenarios without the secrecy consideration. A detailed ex-
planation can be found in [15].

2In this paper, systems with non-adaptive rates are different from systems
with fixed rates. The systems with fixed rates indicate that the encoding rates
are already given and hence cannot be chosen freely. The systems with non-
adaptive rates indicate that the encoding rates can be chosen in the design
process but are constant for all message transmissions.

pilot power. One interesting finding is that, in the scenario
where both the legitimate receiver and the eavesdropper
obtain imperfect channel estimates, increasing the pilot
power for more accurate channel estimation can harm
the throughput of the secure transmission even if the pilot
power is obtained for free.

The remainder of this paper is organized as follows. Sec-
tion II gives the system model and the assumptions on channel
knowledge. Section III analyzes the secure on-off transmission
design for systems with fixed encoding rates. Section IV devel-
ops two joint rate and on-off transmission designs depending
on whether the encoding rates are non-adaptive or adaptive.
Numerical results and conclusions are given in Sections V
and VI, respectively.

II. SYSTEM MODEL

We consider a wireless communication system in which the
transmitter, Alice, wants to send confidential informationto the
intended user, Bob, in the presence of an eavesdropper, Eve.
Alice, Bob and Eve are assumed to have a single antenna each.
We consider the scenario where both Bob and Eve are mobile
users served by the base station, Alice. In order to secure
the transmission to Bob against Eve, Alice tracks the channel
qualities of both mobile stations by asking them to feed back
their estimated instantaneous channel qualities through error-
free feedback links3.

The main assumptions on the system model made in this
paper are listed as follows.

(a) We assume quasi-static fading channels and adopt the
block fading model [17], where the channel gains remain
constant over a block of symbols (i.e., the transmission of
one message) and change independently from one block
to the next.

(b) The block-wise transmission is adopted. At the start of
each block, pilot symbols are transmitted to enable chan-
nel estimation at the receiver. Then, both Bob and Eve
estimate their channels and feed the estimated channel
qualities back to Alice. Finally, the data symbols are
transmitted.

(c) We assume that the transmission power of the pilot symbol
can be different from the transmission power of the data
symbol.

(d) We assume that the duration of a block is sufficiently long.
For simplicity, the time spent on training and feedback is
negligible compared with the data transmission time.

(e) We assume that the average signal-to-noise ratios (SNRs)
at both Bob and Eve, without the consideration of channel
estimation errors, are known at Alice.

Among the above five assumptions, assumptions (a), (b), (e)
are more important than assumptions (c) and (d). With assump-
tions (a) and (b), the receivers are able to provide instantaneous
CSI feedback to Alice. Assumption (e) indicates that Alice can
obtain the statistics of both Bob and Eve’s channels. Note

3Note that only the channel quality, which is a real number as opposed to
the complex channel coefficient, is required to be fed back toAlice. In this
paper, we assume a high-quality feedback link with negligible quantization
errors.
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that the availability of (some forms of) instantaneous and
statistical CSI at the transmitter is very important for designing
secure transmission schemes at the physical layer. Assumption
(c) is very general and practical, which is often assumed in
the work related to pilot-symbol-aided channel estimation.
Assumption (d) is made for the simplicity of presenting and
discussing results. This assumption can be relaxed if needed.
For example, if the block length is not sufficient long such
that the time spent on training and feedback is considerable
compared with the data transmission time, we can introduce
a new parameter to represent the ratio of pilot transmission
and feedback time to data transmission time, and include this
parameter when evaluating the system performance.

The data symbol transmitted by Alice is denoted byd. The
transmission power of the data symbol is normalized so that
E{|d|2} = 1, whereE{·} is the expectation operation. The
pilot symbol is denoted byt. The ratio of pilot power to data
power is denoted by

α =
E{|t|2}

E{|d|2}
= E{|t|2}. (1)

SinceE{|d|2} = 1, we also callα as the normalized pilot
power (normalized by data power) in this paper. The received
symbols at Bob and Eve are, respectively, given by

yb =
√

Pbhbx+ nb, (2)

ye =
√

Pehex+ ne, (3)

where hb and he denote the channel gains from Alice to
Bob and Alice to Eve, respectively. each having a zero-
mean complex Gaussian distribution with unit variance, i.e.,
CN (0, 1). We assume that Bob and Eve’s channels, i.e.,hb and
he, are independent. This assumption is reasonable for rich-
scattering environment where Bob and Eve are not very close
to each other. The additive white noise with complex Gaussian
distributionCN (0, 1) at Bob and Eve are denoted bynb and
ne. The transmitted signalx can be a data symbol,d, or a pilot
symbol,t. Since the data power is normalized to unity,Pb and
Pe represent the average data signal-to-noise ratios at Bob and
Eve without the consideration of channel estimation errors,
respectively. Thus,Pb andPe are parameters that indicate the
general channel conditions between the transmitter and the
receivers. For example,Pb > Pe may indicate that the distance
from Alice to Bob is smaller than the distance from Alice to
Eve.

A. Channel Estimation

We assume that Bob’s channel is estimated by the MMSE
estimator during pilot transmission. The estimation of Bob’s
channel gain and the estimation error are denoted byĥb and
h̃b, respectively. Thus,

hb = ĥb + h̃b, (4)

where ĥb and h̃b are assumed to have zero-mean complex
Gaussian distributions. The assumption of Gaussian distributed
channel estimation error arises from using the MMSE estima-
tor for channel estimation in the Bayesian linear model [18],

e.g., pilot-symbol-aided channel estimation [19] as considered
in this work. More specifically, since the channel coefficient,
hb, has a complex Gaussian distribution and the received sig-
nal,yb, is a linear function of the channel coefficient, the linear
MMSE estimation becomes the optimal MMSE estimation.
Thus, by using a linear estimator, the estimated channel coeffi-
cient and the estimation error are zero-mean complex Gaussian
distributed. In fact,|ĥb| is what Bob feeds back to Alice as
the estimated instantaneous channel quality. The orthogonality
principle impliesE{|hb|2} = E{|ĥb|2}+E{|h̃b|2}. According
to [20], the variance of channel estimation error is given by

βb = E{|h̃b|
2} =

1

1 + αPbTt

, (5)

whereTt is the length of pilot transmission. In this paper, it
is assumed thatTt = 1. Hence the effect of channel training
is solely characterized by the normalized pilot power,α. For
convenience, we let̂γb = Pb|ĥb|2 and γ̃b = Pb|h̃b|2, each
having an exponential distribution given by

fγ̂b
(γ̂b) =

1

Pb(1− βb)
exp

(

−
γ̂b

Pb(1− βb)

)

, γ̂b > 0, (6)

fγ̃b
(γ̃b) =

1

Pbβb

exp

(

−
γ̃b

Pbβb

)

, γ̃b > 0. (7)

We assume that Bob uses the estimated channel gain for data
detection. Then, the actual instantaneous SNR at Bob can be
written as [21]

γb =
Pb|ĥb|

2

Pb|h̃b|2 + 1
=

γ̂b

γ̃b + 1
. (8)

We assume that Eve’s channel is also estimated by the
MMSE estimator. The estimation of Eve’s channel gain and
the estimation error are denoted byĥe and h̃e, respectively.
Thus,

he = ĥe + h̃e. (9)

Under the assumption of using MMSE estimator for channel
estimation in the Bayesian linear model,ĥe andh̃e have zero-
mean complex Gaussian distributions. In fact,|ĥe| is what
Eve is required to feed back to Alice as the estimated instan-
taneous channel quality. The orthogonality principle implies
E{|he|

2} = E{|ĥe|
2} + E{|h̃e|

2}. In addition, the variance
of channel estimation error is given by

βe = E{|h̃e|
2} =

1

1 + αPeTt

, (10)

where we assumeTt = 1. Similar, we letγ̂e = Pe|ĥe|2 and
γ̃e = Pe|h̃e|2, each having an exponential distribution given
by

fγ̂e
(γ̂e) =

1

Pe(1− βe)
exp

(

−
γ̂e

Pe(1 − βe)

)

, γ̂e > 0, (11)

fγ̃e
(γ̃e) =

1

Peβe

exp

(

−
γ̃e

Peβe

)

, γ̃e > 0. (12)

With the MMSE channel estimation, the actual instantaneous
SNR for data detection at Eve can be written as

γe =
Pe|ĥe|2

Pe|h̃e|2 + 1
=

γ̂e

γ̃e + 1
. (13)



4

It should be noted that in principle Eve is able to further
improve the channel estimation by performing joint channel
and data detection, while Alice has no mechanism to tell if
this is the case. As a robust approach for achieving secrecy,
Alice may assume the worst case scenario where Eve perfectly
knows her own channel. Then, the actual instantaneous SNR
at Eve isγe = Pe|he|2, which has an exponential distribution
given by

fγe
(γe) =

1

Pe

exp

(

−
γe

Pe

)

, γe > 0. (14)

B. Channel Knowledge

As mentioned before, Alice asks both Bob and Eve to
feed back their estimated instantaneous channel qualitiesafter
the pilot transmission phase. Since Bob is the intended user,
we simply assume that Alice has and trusts the feedback
from Bob with the knowledge of̂γb = Pb|ĥb|2 as Bob’s
estimated instantaneous SNR. The actual instantaneous SNR
at Bob is given in (8). However, Eve is an eavesdropper, and
may not cooperate with Alice. Hence, Alice may not obtain
or trust the feedback information from Eve. In this work,
we specifically investigate the following three scenarios with
different assumptions on the channel knowledge:

• Scenario 1: Alice has and trusts the feedback from Eve,
knowing γ̂e = Pe|ĥe|2 as the estimate of the instanta-
neous SNR at Eve. Eve uses the MMSE channel estimate
ĥe for data detection, and hence the actual instantaneous
SNR at Eve is given in (13).

• Scenario 2: Alice has and trusts the feedback from Eve,
knowing γ̂e = Pe|ĥe|2 as the estimate of the instanta-
neous SNR at Eve. Eve is assumed to perfectly know her
own channel, and the actual instantaneous SNR at Eve is
γe = Pe|he|2.

• Scenario 3: Alice does not have or trust Eve’s feedback,
and hence has no knowledge about Eve’s instantaneous
channel. However, the statistics of Eve’s channel, i.e.,Pe,
is still assumed to be known at Alice. Eve perfectly knows
her own channel, and the actual instantaneous SNR at Eve
is γe = Pe|he|2.

In fact, the three scenarios above can also be interpreted as
follows. Scenario 1 represents the case where Eve is exactly
identical to other mobile users. Scenario 2 generally represents
the case where Alice has partial information about Eve’s
channel gain, while allowing Eve to have perfect knowledge
on her own channel. Scenario 3 is valid for the case where
Alice has no feedback from Eve. This scenario is perhaps
the most practical one with current communication protocols
where the channel feedback is only obtained from the intended
receiver. Scenario 3 is also a robust approach for secrecy that
allows Eve to have malicious behaviors, e.g., feeding wrong
information back to Alice.

It should be noted that Scenario 2 is the least-practical
scenario compared with Scenarios 1 and 3. However, it is
necessary to stress the value of studying Scenario 2 in this
paper. From the legitimate users’ perspectives, Scenario 1rep-
resents the most desirable case, where Alice has the feedback

from Eve and Eve has imperfect CSI. In contrast, Scenario 3
represents the worst case, where Alice has no feedback from
Eve and Eve has perfect CSI. There are two different CSI
assumptions between these two scenarios, one on the feedback
from Eve to Alice and the other on the CSI knowledge at Eve.
From theoretical point of view, it is meaningful to see the
impact of changing one of the CSI assumptions on the secure
transmission design. To this end, Scenario 2 is introduced as it
only differs from Scenario 1 or 3 in one CSI assumption. Thus,
Scenario 2 enables us to compare the secure transmissions with
different CSI assumptions changing in step. For instance, the
difference in the results between Scenarios 1 and 2 shows
the effect of the CSI quality at Eve. The difference between
Scenarios 2 and 3 shows the effect of the availability of CSI
feedback.

C. Secure Encoding

We consider the widely-adopted wiretap code [2] for confi-
dential message transmissions. There are two rate parameters,
namely, the codeword transmission rate,Rb, and the confi-
dential information rate,Rs. The positive rate differenceRe =
Rb−Rs is the cost to provide secrecy against the eavesdropper.
A lengthM wiretap code is constructed by generating2MRb

codewordsxM (w, v) of lengthM , wherew = 1, 2, · · · , 2MRs

andv = 1, 2, · · · , 2M(Rb−Rs). For each message indexw, we
randomly selectv from

{

1, 2, · · · , 2M(Rb−Rs)
}

with uniform
probability and transmit the codewordxM (w, v). From [2] [22,
Theorem 1] [23, Definition 2], perfect secrecy cannot be
achieved whenRe < Ce, whereCe denotes Eve’s channel
capacity,Ce = log2(1 + γe). Also, Bob is unable to decode
the received codewords correctly whenRb > Cb, whereCb

denotes Bob’s channel capacity,Cb = log2(1 + γb). Thus,
given a pair of the rate choices,Rb andRs, the secrecy outage
probability [16], pso, and the connection outage probability,
pco, are defined as

pso = Pr(Ce > Rb −Rs | message transmission), (15)

pco = Pr(Cb < Rb | message transmission), (16)

wherePr(·) denotes the probability measure. Note that both
outage probabilities are conditioned on the message transmis-
sion. The security level and the reliability level of a trans-
mission scheme can then be measured by the secrecy outage
probability and the connection outage probability, respectively.

III. O N-OFF TRANSMISSION DESIGN

In this section, we consider each of the three scenarios
described in Section II and show how to design transmission
schemes with good throughput performance, whilst satisfying
certain constraints on the reliability and security levels. In
particular, we consider the on-off transmission: Alice decides
whether or not to transmit according to the information about
Bob and Eve’s estimated instantaneous SNRs, i.e., transmis-
sion takes place when the estimated instantaneous SNR at Bob,
γ̂b, is greater than a certain threshold,µb, and the estimated
instantaneous SNR at Eve,γ̂e, is less than another threshold,
µe, while transmission is suspended whenγ̂b ≤ µb or
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γ̂e ≥ µe. Having this on-off transmission scheme is necessary
for improving the reliability and security performance. For
example, when the channel condition from Alice to Bob is very
bad, transmission may incur a large probability of decoding
error at Bob. Also, when the channel condition from Alice to
Eve is very good, transmitting message may lead to a large
probability that the confidential information is leaked to Eve.
Since the security and reliability performances are related to
different channels, which can be seen from (15) and (16), it
is reasonable to set two separate SNR thresholds on Bob’s
channel and Eve’s channel, respectively. In the scenario where
Alice does not have or trust the feedback from Eve, there is
no on-off SNR threshold on Eve’s channel,µe, or equivalently
µe = ∞.

We assume that the encoding rates have already been
designed such that both the codeword transmission rate,Rb,
and the confidential information rate,Rs, are fixed4. The
design problem is to maximize the throughput,η, subject to
two constraints, one on the security performance and the other
on the reliability performance, which can be written as5

max
µb,µe

η = ptx (1− pco)Rs, (17)

s.t. pso ≤ ǫ, pco ≤ δ, (18)

where ptx denotes the probability of transmission due to
the on-off transmission scheme,ǫ ∈ [0, 1] and δ ∈ [0, 1]
represent the security and reliability requirements. The secrecy
outage probability is required to be no larger thanǫ, and
the connection outage probability is required to be no larger
than δ. The controllable parameters to design are the two
on-off SNR thresholds,µb andµe. Note that the throughput
maximization provided in this paper only gives an achievable
bound on the throughput of secure transmission.

In what follows, we consider the transmission design in
the three different scenarios described in Section II. For each
scenario, the transmission probability, the connection outage
probability and the secrecy outage probability are derived
firstly. Then, the feasibility of security and reliability con-
straints is discussed. Here the feasibility of constraintsmeans
that the constraints can be satisfied whilst achieving a positive
information rate. Finally, the solution of the optimization
problem is given as a proposition.

A. Scenario One

Derivations of ptx, pco and pso: Since Bob’s estimated in-
stantaneous SNR is independent with Eve’s estimated instan-
taneous SNR, the probability of transmission in Scenario 1 is

4The problem considering the design of encoding rates whereRb andRs

can be optimally chosen is analyzed in Section IV.
5Note that we do not consider the overhead of pilot and feedback when

calculating the throughput in this paper, since we assume a sufficiently long
block length for simplicity. If the pilot transmission and feedback time is
considered, we can introduce a new parameter, sayθ, to represent the ratio
of pilot transmission and feedback time to data transmission time. Then, the
throughput can be calculated by taking this ratio,θ, into account, i.e., (17)
will change toη = 1

1+θ
ptx(1− pco)Rs.

given as

ptx = Pr(γ̂b > µb) Pr(γ̂e < µe)

= exp

(

−
µb

Pb(1 − βb)

)(

1− exp

(

−
µe

Pe(1 − βe)

))

.(19)

Since γb ≤ γ̂b according to (8) and Bob can decode the
message without error only whenCb ≥ Rb, it is wise to choose
the value ofµb satisfying

log2(1 + µb) ≥ Rb ⇒ µb ≥ 2Rb − 1. (20)

Then, the connection outage probability in Scenario 1 is given
by

pco = Pr (log2(1 + γb) < Rb | γ̂b > µb)

= Pr

(

log2

(

1 +
γ̂b

γ̃b + 1

)

< Rb | γ̂b > µb

)

=
Pr(µb < γ̂b < (2Rb − 1)(γ̃b + 1))

Pr(γ̂b > µb)

= exp

(

µb

Pb(1− βb)

)

·

∫ ∞

µb

2
Rb−1

−1

(

∫ (2Rb−1)(γ̃b+1)

µb

fγ̂b
(γ̂b)dγ̂b

)

fγ̃b
(γ̃b)dγ̃b

=
βb(2

Rb − 1)

1 + βb(2Rb − 2)
exp

(

1

Pbβb

(

1−
µb

2Rb − 1

))

. (21)

The secrecy outage probability in Scenario 1 is given by

pso = Pr(Ce > Rb −Rs | γ̂e < µe)

= Pr

(

log2

(

1 +
γ̂e

γ̃e + 1

)

> Rb −Rs | γ̂e < µe

)

=
Pr
(

(2Rb−Rs − 1)(γ̃e + 1) < γ̂e < µe

)

Pr(γ̂e < µe)
. (22)

On one hand, ifµe ≤ 2Rb−Rs − 1, pso = 0. On the other
hand, ifµe > 2Rb−Rs − 1, we have

pso =

∫

µe

2
Rb−Rs

−1
−1

0

(

∫ µe

(2Rb−Rs−1)(γ̃e+1)
fγ̂e

(γ̂e)dγ̂e

)

fγ̃e
(γ̃e)dγ̃e

1− exp
(

− µe

Pe(1−βe)

)

=

1−βe

1+βe(2Rb−Rs−2)
exp
(

− 2Rb−Rs−1
Pe(1−βe)

)

−exp
(

− µe

Pe(1−βe)

)

1− exp
(

− µe

Pe(1−βe)

)

+

βe(2
Rb−Rs−1)

1+βe(2Rb−Rs−2)
exp
(

1
Pe

(

1
βe

− µe

1−βe
− µe

βe(2Rb−Rs−1)

))

1− exp
(

− µe

Pe(1−βe)

) .

(23)

From (22) and (23), we find that the secrecy outage probability
is directly influenced by the value ofµe but not related to
µb. If µe ≤ 2Rb−Rs − 1, perfect secrecy is achievable in
Scenario 1. Sincêγe ≥ γe in Scenario 1, the estimate of Eve’s
instantaneous SNR, in fact, can be treated as an upper bound
of the actual Eve’s instantaneous SNR. Hence, Alice can make
sureCe < Rb−Rs as long asµe ≤ 2Rb−Rs − 1, and then the
perfect secrecy is achieved. Ifµe > 2Rb−Rs−1, (23) indicates
that the secrecy outage probability increases as the value of
µe increases.
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Feasibility of Constraints: From (21),pco is a decreasing
function ofµb and

lim
µb→+∞

pco = 0. (24)

Thus, the feasible range of the reliability constraint in Sce-
nario 1 is given by

0 < δ ≤ 1. (25)

According to (22),pso is an increasing function ofµe and
pso = 0 as long asµe ≤ 2Rb−Rs − 1. Thus, the feasible range
of the security constraint in Scenario 1 is given by

0 ≤ ǫ ≤ 1. (26)

Hence, any required reliability and security constraints are
feasible by appropriately adjusting the on-off thresholds. It
is noted that perfect secrecy, i.e.,ǫ = 0, can be achieved.

The following proposition summarizes the solution to the
design problem in Scenario 1, where the optimalµb is ex-
pressed in a closed form and the optimalµe is obtained by
numerically solving an equation.

Proposition 1: The optimal parameters of the throughput-
maximizing transmission scheme in Scenario 1 are given as
follows:

µb =







2Rb − 1, if Rb ≤ log2

(

1 + (1−βb)δ
βb(1−δ)

)

,
(

2Rb − 1
)

(

1− Pbβb ln
(

δ
1+βb(2

Rb−2)

βb(2Rb−1)

))

, otherwise.

(27)

µe =

{

+∞, if 1−βe

1+βe(2Rb−Rs−2)
exp

(

− 2Rb−Rs−1
Pe(1−βe)

)

≤ ǫ,

F1, otherwise,
(28)

where F1 is the solution of µe to the equation

ǫ=

1−βe

1+βe(2Rb−Rs−2)
exp
(

− 2Rb−Rs−1
Pe(1−βe)

)

−exp
(

− µe

Pe(1−βe)

)

1− exp
(

− µe

Pe(1−βe)

)

+

βe(2
Rb−Rs−1)

1+βe(2Rb−Rs−2)
exp
(

1
Pe

(

1
βe

− µe

1−βe
− µe

βe(2Rb−Rs−1)

))

1− exp
(

− µe

Pe(1−βe)

) .

(29)

The proof of this proposition is given in Appendix A.

Remark: From (21), when the reliability constraint is very
stringent such thatpco is required to go to zero, the value of
the on-off SNR threshold on Bob’s channel needs to be very
large such thatµb goes to infinity. However, ifµb goes to
infinity, we have the throughput,η, goes to zero. Thus, it is
interesting to investigate the behaviors ofη and pco for the
limiting case whereµb goes to infinity6. From (17), (19) and
(21), we see that bothη andpco are exponential functions of
µb asµb goes to infinity. Hence, the slopes ofη andpco, as a
function ofµb, both go to zero asµb goes to infinity.

6Note thatη also goes to zero, asµe goes to zero. However, since perfect
secrecy is achievable as long asµe ≤ 2Rb−Rs − 1 in this scenario, it is
unnecessary to study the behavior ofη asµe goes to zero.

In addition, in this scenario if the transmitter increases
the pilot power, the estimation errors at both the legitimate
receiver and the eavesdropper will reduce. Thus, the selection
of normalized pilot power,α, will create an interesting tradeoff
between reducing the estimation errors at the legitimate re-
ceiver and reducing the estimation errors at the eavesdropper.
Here, we briefly discuss the method to calculate the optimalα

as follows, instead of providing a detailed analysis. First, we
need to find the expressions of optimalµb andµe in terms of
α by substituting (5) and (10) into (27) and 28), respectively.
Then,ptx andpco can be expressed as functions ofα. Finally,
the optimalα is the solution to the optimization problem of

max
α

η = ptx(α) (1− pco(α))Rs, (30)

s.t. α > 0. (31)

Due to the complex expressions of the optimalµb andµe, it
is difficult to find a closed-form solution of the optimalα. But
this problem can be solved numerically.

B. Scenario Two

Derivations of ptx, pco and pso: The derivations of the
probability of transmission and the connection outage proba-
bility in Scenario 2 are the same as (19) and (21) in Scenario 1,
respectively. The secrecy outage probability in Scenario 2is
given by

pso = Pr(Ce > Rb −Rs | γ̂e < µe)

= Pr(log2(1 + γe) > Rb −Rs | γ̂e < µe)

=
Pr(γe > 2Rb−Rs − 1, γ̂e < µe)

Pr(γ̂e < µe)

=

∫ µe

0

(

∫∞

2Rb−Rs−1
fγe|γ̂e

(γe|γ̂e)dγe
)

fγ̂e
(γ̂e)dγ̂e

1− exp
(

− µe

Pe(1−βe)

) . (32)

According to the definitions ofγe and γ̂e in Scenario 2,γe
conditioned on its estimate,̂γe, follows a non-central chi-
square distribution with two degrees of freedom. Applying the
cumulative distribution function of the non-central chi-square
distribution, we have

∫ ∞

2Rb−Rs−1

fγe|γ̂e
(γe|γ̂e)dγe=Q1





√

2γ̂e
Peβe

,

√

2Rb−Rs+1−2

Peβe



 ,

(33)
whereQx(a, b) represents the Marcum Q-function [24]. Thus,
the secrecy outage probability in Scenario 2 can be rewritten
as

pso =

∫ µe

0
Q1

(√

2γ̂e

Peβe
,
√

2Rb−Rs+1−2
Peβe

)

fγ̂e
(γ̂e)dγ̂e

1−exp
(

− µe

Pe(1−βe)

)

=

∫ µe

0
exp
(

− γ̂e

Pe(1−βe)

)

Q1

(√

2γ̂e

Peβe
,
√

2Rb−Rs+1−2
Peβe

)

dγ̂e

Pe (1−βe)
(

1−exp
(

− µe

Pe(1−βe)

)) . (34)

Feasibility of Constraints: Since the connection outage
probability does not change from Scenario 1 to Scenario 2,
the feasible range of the reliability constraint in Scenario 2
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is identical to (25) in Scenario 1. Sincepso is an increasing
function ofµe and

lim
µe→0

pso = Pr(Ce > Rb −Rs | γ̂e = 0)

= Pr(log2(1 + γe) > Rb −Rs | γ̂e = 0)

=

∫ ∞

2Rb−Rs−1

fγe|γ̂e=0(γe|γ̂e = 0)dγe

= Q1



0,

√

2Rb−Rs+1 − 2

Peβe



 . (35)

Thus, the feasible range of the security constraint is givenas

Q1



0,

√

2Rb−Rs+1 − 2

Peβe



 < ǫ ≤ 1. (36)

Thus, any required reliability constraint is feasible, while the
security constraint is feasible only when (36) is satisfied.

The following proposition summarizes the solution to the
design problem in Scenario 2, where the optimalµb is ex-
pressed in a closed form and the optimalµe is obtained by
numerically solving an equation.

Proposition 2: The optimal parameters of the throughput-
maximizing transmission scheme in Scenario 2 are given as
follows:

µb =







2Rb − 1, if Rb ≤ log2

(

1 + (1−βb)δ
βb(1−δ)

)

,
(

2Rb − 1
)

(

1− Pbβb ln
(

δ
1+βb(2

Rb−2)

βb(2
Rb−1)

))

, otherwise.

(37)

µe =

{

+∞, if exp
(

− 2Rb−Rs−1
Pe

)

≤ ǫ,

F2, otherwise,
(38)

where F2 is the solution of µe to the equation

ǫ=

∫ µe

0 exp
(

− γ̂e

Pe(1−βe)

)

Q1

(√

2γ̂e

Peβe
,
√

2Rb−Rs+1−2
Peβe

)

dγ̂e

Pe (1−βe)
(

1−exp
(

− µe

Pe(1−βe)

)) . (39)

The proof of this proposition is given in Appendix B. Note that
the optimalµb in Scenario 2 is identical to that in Scenario 1.

Remark: In this scenario, when the security constraint is
very stringent such thatpso converges to its limit in (35), the
value of the on-off SNR threshold on Eve’s channel needs
to be very small such thatµe goes to zero. However, ifµe

goes to zero, we have the throughput,η, goes to zero. Thus, it
is interesting to investigate the behavior ofη for the limiting
case whereµe goes to zero or equivalentlypso converges to
its limit7 From (17) and (19),η can be rewritten as

η(µe) = A (1− exp(−Bµe)) , (40)

whereA = exp
(

− µb

Pb(1−βb)

)

(1− pco)Rs andB = 1
Pe(1−βe)

.
The Taylor expansion of the above function aroundµe = 0 is

7The behavior ofη for the limiting case whereµb goes to infinite in
this scenario is exactly the same as discussed in Scenario 1.To avoid the
redundancy, we do not discuss it here again.

given by

∞
∑

n=0

η(n)(0)µn
e

n!
= A

(

1−
∞
∑

n=0

(−1)n
Bnµn

e

n!

)

= A
(

1−
(

1−Bµe +O
(

µ2
e

)))

= ABµe −O
(

µ2
e

)

, (41)

whereO(·) denotes the less-significant terms, and expresses
the error. Thus, the most-significant term ofη(µe) around
µe = 0 is

ABµe =
(1− pco)Rs

Pe(1− βe)
exp

(

−
µb

Pb(1 − βb)

)

µe, (42)

and the slope ofη(µe), asµe goes to zero, can be approxi-
mated as

(1 − pco)Rs

Pe(1− βe)
exp

(

−
µb

Pb(1− βb)

)

. (43)

Besides, according to (38) in Proposition 2,µe = ∞ when

exp

(

−
2Rb−Rs − 1

Pe

)

≤ ǫ ≤ 1. (44)

This indicates that Alice can ignore the feedback from Eve
to design the system parameters when the security constraint
satisfies (44). Therefore, the design problem in Scenario 2 is
identical to the design problem in Scenario 3 when the security
constraint satisfies (44).

C. Scenario Three

In Scenario 3, Alice does not have or trust the feedback from
Eve. Thus, Alice decides whether or not to transmit according
to the information about Bob’s estimated instantaneous SNR.
Then, the on-off SNR threshold on Eve’s channel,µe, does
not exist, and there is only one parameter to design, i.e.,µb.

Derivations of ptx, pco and pso: The probability of trans-
mission in Scenario 3 is given as

ptx = Pr(γ̂b > µb) = exp

(

−
µb

Pb(1 − βb)

)

. (45)

The derivation of the connection outage probability in Sce-
nario 3 is identical to (21) in Scenarios 1 and 2. The secrecy
outage probability in Scenario 3 is given by

pso = Pr(Ce > Rb −Rs) = exp

(

−
2Rb−Rs − 1

Pe

)

. (46)

Note that the secrecy outage probability in Scenario 3 is a
constant value and uncontrollable. Thus, the security constraint
is either always achievable or always unachievable no matter
what the value of the design parameter is.

Feasibility of Constraints: Since the connection outage
probability remains the same in Scenarios 1, 2 and 3, the
feasible range of the reliability constraint in Scenario 3 is
identical to (25) in Scenarios 1 and 2. Since the secrecy outage
probability in Scenario 3 is not controllable, the feasiblerange
of the security constraint in Scenario 3 is given by

exp

(

−
2Rb−Rs − 1

Pe

)

≤ ǫ ≤ 1. (47)
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Thus, any required reliability constraint is feasible, while the
security constraint is feasible only when (47) is satisfied.Note
that the lower bound of the feasible security constraint in this
scenario is the same as (44) in the analysis for Scenario 2.
This is because the design problems in Scenarios 2 and 3 are
the same when (44) is satisfied.

The following proposition summarizes the solution to the
design problem in Scenario 3.

Proposition 3: The optimal parameter of the throughput-
maximizing transmission scheme in Scenario 3 is given in (27).

Remark: Comparing the optimal solutions to the design
problems in the three different scenarios, we can find that
the three scenarios have the same optimal solution ofµb

but different optimal solutions ofµe. This is because that
we have the same assumption on the channel knowledge of
the legitimate link but different assumptions on the channel
knowledge of the eavesdropper’s link in different scenarios.

Besides, it is noted that the security performance of systems
in Scenario 3 cannot be controlled by the design parameters
for the fixed rate transmission scheme. In order to control
the security performance of systems in Scenario 3, a detailed
analysis on the joint rate and on-off transmission design for
systems in Scenario 3 is provided in the next section.

IV. JOINT RATE AND ON-OFF TRANSMISSION DESIGN

As analyzed in Section III, for networks in Scenario 3,
the security performance of the communication system is
uncontrollable if we only consider the design of the on-off
transmission parameters, i.e, the on-off thresholds. In order to
control the security performance, in this section, we re-study
the design problem in Scenario 3 considering the joint rate and
on-off transmission design8. Unlike the on-off transmission
design in Section III where the encoding rates,Rb and Rs,
are fixed, in this section we allow more degrees of freedom
such thatRb andRs can be optimally chosen.

The design problem is to maximize the throughput,η,
subject to two constraints, one on the security performanceand
the other on the reliability performance. In Scenario 3, Alice
decides whether or not to transmit according to the estimated
instantaneous SNR at Bob,̂γb. The design problem can be
written as

max
µb,Rb,Rs

η, (48)

s.t. pso ≤ ǫ, pco ≤ δ. (49)

The controllable parameters to design are the codeword trans-
mission rate,Rb, the confidential information rate,Rs, and the
on-off SNR threshold on Bob’s channel,µb. In the following,
two different transmission schemes are derived, accordingto
whether the encoding rates are non-adaptive or adaptive. The
expression of the throughput,η, for each transmission scheme
is provided in the corresponding subsection.

8The joint rate and on-off transmission design for Scenarios1 and 2 can
be obtained in a similar way as presented in this section.

A. Non-Adaptive Rate Scheme

We first consider the non-adaptive rate scheme where the
codeword transmission rate,Rb, and the confidential informa-
tion rate,Rs, are both constant over time. The throughput for
the non-adaptive rate scheme is given by

η = ptx(1− pco)Rs. (50)

Derivations of ptx, pco and pso: The probability of trans-
mission is given in (45). The connection outage probability
is given in (21). The secrecy outage probability is given in
(46). Note that the security performance is controllable now,
sinceRb andRs can be optimal chosen.

Feasibility of Constraints: Sincepso is independent ofµb,
the choice ofµb does not affectpso. Also, from (24), we can
set µb sufficiently large to achieve any arbitrarily smallpco.
Thus, the feasible range of the reliability constraint in the non-
adaptive rate scheme is identical to (25). According to (46),
pso is a decreasing function ofRb −Rs and

lim
Rb−Rs→+∞

pso = 0. (51)

Thus, the feasible range of the security constraint in the non-
adaptive rate scheme is given by

0 < ǫ ≤ 1. (52)

Note that any required reliability and security constraints are
feasible by appropriately choosingRb andRs.

In Section III, pso and pco are independently controlled
by different design parameters. However, in this section, the
choices of encoding rates affect both the connection outage
probability and the secrecy outage probability. In other words,
with the encoding rates controllable,pso and pco are related
by the rate parameters. For example, from the derivations
of connection and secrecy outage probabilities, a smallerRb

allows us to achieve a smaller connection outage probability
but may increase the secrecy outage probability. This enables
a trade-off between the feasible reliability constraint and the
feasible security constraint. To illustrate such a trade-off, we
analyze the feasible constraints for the system with a given
on-off threshold,µb. To satisfyRs > 0 andpso ≤ ǫ, we have
2Rb − 1 > Pe ln ǫ

−1. Also, from (20) andpco ≤ δ, we have
2Rb −1 ≤ min {µb, F4(µb, δ)} whereF4(µb, δ) is the positive
solution ofx to the equation

µb = x

(

1− Pbβb ln

(

δ
βbx+ 1− βb

βbx

))

. (53)

Thus, for any chosen value ofµb, the feasible constraints
for having secure communication with positive confidential
information rate must satisfy

exp

(

−
min {µb, F4(µb, δ)}

Pe

)

< ǫ. (54)

From (53), it is easy to see thatF4(µb, δ) is an increasing
function of δ. Thus, according to (54), the minimum feasible
value of ǫ increases with the decrease ofδ. In other words,
if we set a stricter reliability constraint, the feasible security
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constraint becomes loose. Note that when the reliability con-
straint is sufficiently loose,F4(µb, δ) becomes always greater
thanµb, and (54) changes to

exp

(

−
µb

Pe

)

< ǫ. (55)

The following proposition summarizes the solution to the
design problem for the non-adaptive rate scheme, where each
of the optimal µb and the optimalRs is expressed as a
closed-form function ofRb and the optimalRb is obtained
by numerically solving an optimization problem.

Proposition 4: The optimal parameters of the throughput-
maximizing transmission scheme with non-adaptive rates are
given as follows:

µb =







2Rb − 1, if Rb ≤ log2

(

1 + (1−βb)δ
βb(1−δ)

)

,
(

2Rb − 1
)

(

1− Pbβb ln
(

δ
1+βb(2

Rb−2)

βb(2
Rb−1)

))

, otherwise.

(56)

Rs = Rb − k, where k = log2(1 + Pe ln ǫ
−1). (57)

Rb is obtained by solving the problem given as

max
Rb

(Rb − k) exp

(

−
µb

Pb(1 − βb)

)

·

(

1−
βb

(

2Rb−1
)

1+βb(2Rb−2)
exp

(

1

Pbβb

(

1−
µb

2Rb−1

))

)

, (58)

s.t. k < Rb <

max

{

log2

(

1+
(1−βb)δ

βb(1−δ)

)

, k+
1

ln2
W
(

2−kPb(1−βb)
)

}

, (59)

where W(·) is the Lambert W function and µb is a function
of Rb whose expression is formulated as (56).
The proof of this proposition is given in Appendix C

B. Adaptive Rate Scheme

Now, we consider the scenario where the codeword trans-
mission rate,Rb, and the confidential information rate,Rs,
can be adaptively chosen according to the estimated Bob’s
instantaneous SNR. Since the confidential information rate,
Rs, is adaptively chosen according to any givenγ̂b, the
throughput for the adaptive rate scheme is given by

η =

∫ ∞

µb

(1− pco)Rsfγ̂b
(γ̂b)dγ̂b. (60)

The lower limit of the integral in (60) is equal toµb, since the
transmission takes place only whenγ̂b > µb due to the on-off
transmission scheme.

Then, we consider the design problem of finding the values
of Rb, Rs andµb that maximize the throughput. SinceRb and
Rs can be adaptively chosen according to any givenγ̂b, we
treat this design as a two-step optimization problem given by

Step 1: For any given̂γb (γ̂b > µb), solve

max
Rb,Rs

(1− pco)Rs, (61)

s.t. pso ≤ ǫ, pco ≤ δ. (62)

Step 2: Choose the bestµb to maximize the overall throughput
averaged over̂γb.

Note that the optimalRb and Rs are obtained in Step 1
for a given value of̂γb. Thus, the following calculations of
connection and secrecy outage probabilities are conditioned
on a givenγ̂b.

Derivations of pco and pso: Since γb ≤ γ̂b and Bob can
decode the message without error only whenCb ≥ Rb, it is
wise to choose the value ofRb satisfyingRb ≤ log2(1 + γ̂b).
Then, for any given̂γb, the connection outage probability can
be computed as

pco = Pr (log2(1 + γb) < Rb | γ̂b)

= Pr

(

log2

(

1 +
γ̂b

γ̃b + 1

)

< Rb | γ̂b

)

= Pr

(

γ̃b >
γ̂b

2Rb − 1
− 1 | γ̂b

)

= exp

(

−
1

Pbβb

(

γ̂b

2Rb − 1
− 1

))

. (63)

The secrecy outage probability does not change from the non-
adaptive rate scheme given in (46).

Feasibility of Constraints: According to (63), we have

γ̂b → ∞ ⇒ pco → 0 (64)

Since pso is independent ofµb, the choice ofµb does not
affect pso. Also, we can setµb sufficiently large such that
transmission happens only when̂γb is sufficiently large to
achieve any arbitrarily smallpco. Therefore, it is feasible
to have δ → 0. Thus, the feasible range of the reliability
constraint is the same as (25). For the same reason described
in the non-adaptive rate scheme, the feasible range of the
security constraint is identical to (52). Therefore, any required
reliability and security constraints are feasible by appropriately
choosingRb andRs.

The following proposition summarizes the solution to the
design problem for the adaptive rate scheme, where the opti-
mal µb is given by a closed-form solution, the optimalRs is
expressed as a closed-form function ofRb and the optimalRb

is obtained by numerically solving an optimization problem.
Proposition 5: The optimal parameters of the throughput-

maximizing transmission scheme with adaptive rates are given
as follows:

µb =
(

1 + Pbβb ln δ
−1
)

Pe ln ǫ
−1. (65)

Rs = Rb − k, where k = log2(1 + Pe ln ǫ
−1). (66)

Rb is obtained by solving the problem given by

max
Rb

(Rb−k)

(

1−exp

(

1

Pbβb

(

1−
γ̂b

2Rb−1

)))

, (67)

s.t. k < Rb ≤ log2

(

1+
γ̂b

1 + Pbβb ln δ−1

)

. (68)

The proof of this proposition is given in Appendix D.

Remark: From Proposition 5, one can further obtain that
the optimalRb is equal to either the upper bound ofRb, i.e.,
Rb = log2

(

1 + γ̂b

1+Pbβb ln δ−1

)

, or the solution ofRb to the
equation

dI(Rb)

dRb

= 0 (69)
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where I(Rb) = (Rb − k)
(

1− exp
(

1
Pbβb

(

1− γ̂b

2Rb−1

)))

.
Note that whenβb = 0, Proposition 5 implies thatRb =
log2(1 + γb). This is consistent with the optimal solution of
Rb in the absence of the estimation error, where the optimal
codeword rate matches the capacity of Bob’s channel.

V. NUMERICAL RESULTS

In this section, we illustrate and analyze the numerical
results for both the on-off transmission design and the joint
rate and on-off transmission design.

A. On-off Transmission Design

We first present and compare the numerical results for the
on-off transmission designs in the three different scenarios.
The results shown in this subsection are all for networks with
the transmission rates fixed toRb = 2 andRs = 1.
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Fig. 1. Scenario 1: Achievable throughput versus normalized pilot power.
Results are shown for networks with different average received data SNRs at
Bob, Pb = 5 dB, 10 dB, 15 dB, 20 dB. The other system parameters are
δ = 0.1, ǫ = 0.05, Pe = 0 dB, Rb = 2, Rs = 1.

Figs. 1 and 2 demonstrate the achievable throughput against
the normalized pilot power for networks with different average
received SNRs at Bob9 in Scenarios 1 and 2, respectively.
The average received SNR at Eve,Pe, is fixed to 0 dB. Also,
the reliability and security constraints are fixed. As shownin
Fig. 1, it is interesting that the throughput does not always
increase with the increase of normalized pilot power. As the
curves ofPb = 10 dB, 15 dB, 20 dB present, the throughput
increases fast to a peak when the normalized pilot power
increases to the optimal value (α = 2.28 for Pb = 10 dB,
α = 0.87 for Pb = 15 dB, α = 0.83 for Pb = 20 dB).
After achieving the peak value, the throughput decreases with
the increase of the normalized pilot power. This observation
can be explained as follows. In scenario 1, both Bob and

9The results withPb equal to or smaller thanPe are not shown in the
figures. WhenPb is comparable or small thanPe, the achievable throughput
is very small or reaches zero. In order to achieve better performance in such
a scenario, one can consider multi-antenna transmissions or using external
helpers to regain the relative advantage of the legitimate receiver’s channel
over the eavesdropper’s channel, which is beyond the scope of this work.
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Fig. 2. Scenario 2: Achievable throughput versus normalized pilot power.
Results are shown for networks with different average received data SNRs at
Bob, Pb = 5 dB, 10 dB, 15 dB, 20 dB. The other system parameters are
δ = 0.1, ǫ = 0.05, Pe = 0 dB, Rb = 2, Rs = 1.

Eve estimate their channels via the pilot transmission and
feed the channel estimates back to Alice. Increasing pilot
power not only enhances the legitimate users’ knowledge
about the channels, which has a positive effect on the secure
transmission, but also increases the accuracy of channel es-
timation at the eavesdropper, which incurs a negative effect
on the secure transmission. Before the normalized pilot power
reaches the optimal value, to obtain good channel knowledge
at the legitimate users is more important than to keep the
eavesdropper’s channel estimation inaccurate. However, after
the pilot power reaches the optimal value, the disadvantage
incurred by further increasing pilot power overcomes the
benefit. Thus, we observe that increasing normalized pilot
power incurs the peak value of throughput. This observation
suggests that when both Bob and Eve have imperfect channel
estimation dependent on the training process, it is not always
good to have more training power to get more accurate channel
estimation, and the optimal value can be calculated according
to the method discussed in the Remark of Section III-A.

On the other hand, the achievable throughput always is
a non-decreasing function of the normalized pilot power in
Scenario 2, as shown in Fig. 2. In Scenario 2, only Bob has
channel estimation errors but not Eve. Thus, the increase of
training power only improves the legitimate users’ knowledge
about the channels, but has no influence on the eavesdropper’s
knowledge about her own channel. Therefore, it is always good
to have more training power to increase the throughput in this
scenario.

Fig. 3 compares the achievable throughput in Scenarios 1,
2 and 3. There are three groups of curves representing the
networks with three different values of normalized pilot power.
As shown in the figure, subject to different security constraints,
Scenario 1 can always achieve a positive throughput. This is
because Alice and Eve have the same amount of knowledge
about the eavesdropper’s channel in Scenario 1, and Alice in
fact knows an upper bound of the actual instantaneous SNR at
Eve (̂γe ≥ γe). On the other hand, Scenarios 2 and 3 can obtain
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Fig. 3. Comparison of the three scenarios: Achievable throughput versus
security constraint. Results are shown for networks with different values of
normalized pilot power,α = 1, 5,∞. The other system parameters arePb =
10 dB, Pe = 0 dB, δ = 0.1, Rb = 2, Rs = 1. Note that the case ofα = ∞

is equivalent to having perfect channel estimation.

a positive throughput only when the security constraints are in
the feasible ranges as formulated in (36) and (47), respectively.
In addition, we see that the throughput of each network
in Scenario 3 is a step function of the security constraint
(the throughput is equal to either zero or a positive constant
value), which is because that the controllable parameter isnot
related to the security performance of networks in Scenario3.
Comparing the results for different scenarios, we see that the
networks in the three scenarios can achieve the same through-
put, when the security constraint is sufficiently loose satisfying
(44) or (47). Besides, under a same security constraint, the
throughput difference between networks in Scenarios 1 and
2 decreases with the increase of normalized pilot power. As
presented by the case ofα = ∞, Scenarios 1 and 2 can achieve
the same throughput when the channel is perfectly estimated.
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Fig. 4. Scenario 3: Achievable throughput versus the security and reliability
constraints. The system parameters areα = 5, Pb = 10 dB, Pe = 0 dB,
Rb = 2, Rs = 1.

Fig. 4 presents the achievable throughput versus the security

and reliable constraints for the network in Scenario 3. As
shown in the figure, for different reliability constraints,the
throughput is always a step function of the security constraint.
Also, we find that the throughput increases with the loose of
reliability constraint at the beginning. However, if the reliabil-
ity constraint is already sufficiently loose, further loosing the
reliability constraint would not increase the throughput.

B. Joint Rate and On-off Transmission Design

Now, we show the numerical results for the joint rate and
on-off transmission design. The results demonstrated in this
subsection are obtained withPb = 10 dB andPe = 0 dB for
networks in Scenario 3.
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Fig. 5. Feasible security constraint versus feasible reliability constraint for
non-adaptive rate scheme with a given on-off threshold. Results are shown for
networks with different values of normalized pilot power, i.e.,α = 1, 5,∞.
The other system parameters areµb = 9, Pb = 10 dB, Pe = 0 dB.

Fig. 5 illustrates the trade-off between the feasible reliability
constraint and the feasible security constraint for the non-
adaptive rate scheme with a given on-off threshold. For each
network, the feasible constraints lie in the region above the
corresponding curve. As depicted in the figure, there existsa
lower bound on the feasible value ofǫ, although the feasible
value of ǫ generally decreases with the loose of reliability
constraint. From the analytical result, we know that the lower
bound on the feasible value ofǫ is related to the on-off SNR
threshold as given in (55).

Fig. 6 demonstrates the achievable throughput over a range
of security constraints for networks with different normalized
pilot power values, while the reliability constraint is fixed to
δ = 0.1. The curves representing non-adaptive and adaptive
rate schemes are distinguished by different line styles. As
shown in the figure, the achievable throughput rises with
the increase of the normalized pilot power. We see that
adaptively changing the encoding rates significantly improves
the achievable throughput compared with the non-adaptive rate
scheme. In addition, compared with the on-off transmission
design with fixed rates in Section III, the joint rate and on-
off transmission design significantly improves the achievable
throughput. For example, the on-off transmission design with
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Fig. 6. Achievable throughput versus security constraint.Results are shown
for networks with different values of normalized pilot power, i.e., α = 1, 5.
The other system parameters areδ = 0.1, Pb = 10 dB, Pe = 0 dB.

fixedRb = 2 andRs = 1 cannot achieve a positive throughput
value subject to a large range of security constraints, as shown
in Fig. 3, while the joint rate and on-off transmission design
can always achieve a positive throughput value subject to any
security constraint.
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Fig. 7. Achievable security constraint versus normalized pilot power. Results
are shown for networks with different target throughput values, i.e.,η =
0.2, 0.5. The other system parameters areδ = 0.1, Pb = 10 dB, Pe = 0
dB.

Fig. 7 shows the effect of increasing the normalized pilot
power on the achievable security level of networks with
different target throughput values. The curves representing
non-adaptive and adaptive rate schemes are distinguished by
different line styles. By observing the slopes of curves, we
find that the improvement of increasing the pilot power on the
achievable security level is significant when the normalized
pilot power is small. However, further increasing the pilot
power can obtain very little benefit when the pilot power has
already become large.

Fig. 8 presents the achievable throughput versus the security
and reliable constraints for the non-adaptive rate scheme.As
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Fig. 8. Non-adaptive rate scheme: Achievable throughput versus security
and reliability constraints. The system parameters areα = 5, Pb = 10 dB,
Pe = 0 dB.

shown in the figure, the throughput increases with the loose
of security constraint all the time subject to a given reliability
constraint. However, similar to the 3D result shown in the
last subsection, the throughput increases only at the beginning
with the loose of reliability constraint subject to a given
security constraint, and it would not continue increasing if the
reliability constraint is already sufficiently loose. In addition,
we see that the change of the security constraint has larger
effect on the throughput than the change of the reliability
constraint, since the throughput increases faster along with
the loose of security constraint than the loose of reliability
constraint.

VI. CONCLUSIONS

In this work, we presented a comprehensive study of secure
transmission design in quasi-static slow fading channels with
channel estimation errors. For systems with fixed encoding
rates, throughput-maximizing on-off transmission schemes
were proposed for scenarios with different assumptions on
the channel knowledge. For systems with encoding rates
controllable, we derived both non-adaptive and adaptive rate
transmission schemes which jointly optimize the rate param-
eters and the on-off thresholds. Our analytical and numerical
results illustrated how the optimal design and the achievable
throughput vary with the change in the channel knowledge
assumptions. In addition, we found that increasing the pilot
power for more accurate channel estimation sometimes can
harm the system performance. When both the legitimate
receiver and the eavesdropper estimate their channels via
the pilot transmission, increasing pilot power decreases the
channel estimation errors at both the legitimate receiver and
the eavesdropper. The overall throughput increases at the
beginning but can decrease after achieving the peak value,
as the pilot power increases.

Besides, some interesting research directions for the future
work are discussed as follows. In this paper, our design
solutions are based on the assumption of independent channels
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for Bob and Eve. One interesting future work is to study
the effect of channel correlation on the transmission design
performance. Also, apart from the channel estimation errors
due to the estimation process, the investigation on the effects
of additional channel estimation errors due to the quantization
and finite-rate feedback is another interesting research direc-
tion.

APPENDIX A

Proof of Proposition 1: We first derive the optimalµb in
Scenario 1. One can find thatµb = 2Rb−1 is the only solution
of µb to the equation

∂η(µb, µe)

∂µb

= 0 (70)

and
∂2η(2Rb − 1, µe)

∂µ2
b

< 0. (71)

Thus, if we ignore the possible bound ofµb, the optimalµb is
equal to2Rb −1. However, to satisfy the reliability constraint,
pco ≤ δ, there exists a possible lower bound ofµb given by

µb ≥
(

2Rb − 1
)

(

1− Pbβb ln

(

δ
1 + βb(2

Rb − 2)

βb(2Rb − 1)

))

. (72)

Considering the lower bound, the optimalµb in Scenario 1 is
formulated as (27) in Proposition 1.

Then, we derive the optimalµe in Scenario 1. Sinceptx is
an increasing function ofµe andpco is independent ofµe, it is
optimal to maximizeµe while satisfying the security constraint
pso ≤ ǫ. From the definition ofpso, one can find thatpso is
an increasing function ofµe. Thus, there is only one or no
solution ofµe to the equation

pso(µe) = ǫ (73)

where the expression ofpso is given as (23). When

Pr(Ce > Rb −Rs) ≤ ǫ

⇔
1− βe

1 + βe(2Rb−Rs − 2)
exp

(

−
2Rb−Rs − 1

Pe(1− βe)

)

≤ ǫ, (74)

there is no solution ofµe to (73), which means that there
is no need to set an on-off SNR threshold onγ̂e for the
system (the required security constraint is always achievable)
or equivalentlyµe = ∞. Otherwise, there exists one and only
one solution ofµe to (73), which is the optimal value ofµe to
the maximization problem. Although it is difficult to obtaina
closed-form solution ofµe, this problem can be easily solved
numerically. Thus, the optimalµe in Scenario 1 is formulated
as (28) in Proposition 1. �

APPENDIX B

Proof of Proposition 2: The optimalµb in Scenario 2 is the
same as that in Scenario 1 and the proof of it is identical to
the corresponding part in the proof of Proposition 1. Now,
we derive the optimalµe in Scenario 2. Sinceptx is an
increasing function ofµe and pco is independent ofµe, it is
optimal to maximizeµe while satisfying the security constraint

pso ≤ ǫ. From the definition ofpso, one can find thatpso is
an increasing function ofµe. Thus, there is only one or no
solution ofµe to the equation

pso(µe) = ǫ (75)

where the expression ofpso is given as (34). When

Pr(Ce > Rb −Rs) ≤ ǫ ⇔ exp

(

−
2Rb−Rs − 1

Pe

)

≤ ǫ, (76)

there is no solution ofµe to (75), which means that there
is no need to set an on-off SNR threshold onγ̂e for the
system (the required security constraint is always achievable)
or equivalentlyµe = ∞. Otherwise, there exists one and only
one solution ofµe to (75), which is the optimal value of
µe to the maximization problem. Although it is difficult to
obtain a closed-form solution ofµe, this problem can be easily
solved numerically. Therefore, the optimalµe in Scenario 2 is
formulated as (38) in Proposition 2. �

APPENDIX C

Proof of Proposition 4: The proof of the optimalµb for the
non-adaptive scheme is identical to the proof of optimalµb

in Section III. Now, we prove the optimalRs for any chosen
Rb as follows. Sinceptx and pco are independent ofRs, it
is optimal to maximizeRs. Thus, we obtain the optimalRs

while satisfyingpso ≤ ǫ as (57) in Proposition 4. Then, we
prove the optimalRb. SinceRs > 0, we haveRb > k. It is
easy to prove that when

Rb ≥max

{

log2

(

1+
(1− βb)δ

βb(1 − δ)

)

, k+
1

ln2
W
(

2−kPb(1− βb)
)

}

,

(77)
the value ofη is a decreasing function ofRb, i.e,

∂η(µb, Rb)

∂Rb

< 0. (78)

Therefore, the optimalRb can be obtained by solving the
optimization problem given in Proposition 4. �

APPENDIX D

Proof of Proposition 5: The proof of the optimalRs for
the adaptive rate scheme is identical to the corresponding
part in the proof of Proposition 4. Now, we derive the
optimal Rb. To satisfy Rs > 0 and pco ≤ δ, we obtain
the lower and upper bounds ofRb given by Rb > k and
Rb ≤ log2

(

1 + γ̂b

1+Pbβb ln δ−1

)

. Thus, the optimalRb can
be obtained by solving the optimization problem given in
Proposition 5. Then, we derive the optimalµb. To derive the
optimal,µb, we start from looking for the range ofγ̂b in which
it is possible to have secure communication with positive
confidential information rate while satisfying both constraints.
Let the lower bound ofRb be less than the upper bound of
Rb, we can find the feasible range ofγ̂b as

log2
(

1 + Pe ln ǫ
−1
)

< log2

(

1 +
γ̂b

1 + Pbβb ln δ−1

)

⇔ γ̂b >
(

1 + Pbβb ln δ
−1
)

Pe ln ǫ
−1. (79)

Therefore, the optimalµb is equal to the lower bound of the
feasibleγ̂b, given by (65). �
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