4 research outputs found

    Nanocutting mechanism of 6H-SiC investigated by scanning electron microscope online observation and stress-assisted and ion implant-assisted approaches

    Get PDF
    Nanocutting mechanism of single crystal 6H-SiC is investigated through a novel scanning electron microscope setup in this paper. Various undeformed chip thicknesses on (0001) orientation are adopted in the nanocutting experiments. Phase transformation and dislocation activities involved in the 6H-SiC nanocutting process are also characterized and analyzed. Two methods of stress-assisted and ion implant-assisted nanocutting are studied to improve 6H-SiC ductile machining ability. Results show that stress-assisted method can effectively decrease the hydrostatic stress and help to activate dislocation motion and ductile machining; ion implant-induced damages are helpful to improve the ductile machining ability from MD simulation and continuous nanocutting experiments under the online observation platform.Peer reviewe

    Topic review : Application of raman spectroscopy characterization in micro/nano-machining

    Get PDF
    The defects and subsurface damages induced by crystal growth and micro/nano-machining have a significant impact on the functional performance of machined products. Raman spectroscopy is an efficient, powerful, and non-destructive testing method to characterize these defects and subsurface damages. This paper aims to review the fundamentals and applications of Raman spectroscopy on the characterization of defects and subsurface damages in micro/nano-machining. Firstly, the principle and several critical parameters (such as penetration depth, laser spot size, and so on) involved in the Raman characterization are introduced. Then, the mechanism of Raman spectroscopy for detection of defects and subsurface damages is discussed. The Raman spectroscopy characterization of semiconductor materials’ stacking faults, phase transformation, and residual stress in micro/nano-machining is discussed in detail. Identification and characterization of phase transformation and stacking faults for Si and SiC is feasible using the information of new Raman bands. Based on the Raman band position shift and Raman intensity ratio, Raman spectroscopy can be used to quantitatively calculate the residual stress and the thickness of the subsurface damage layer of semiconductor materials. The Tip-Enhanced Raman Spectroscopy (TERS) technique is helpful to dramatically enhance the Raman scattering signal at weak damages and it is considered as a promising research field

    Investigation of Ga ion implantation-induced damage in single-crystal 6H-SiC

    No full text
    In order to investigate the damage in single-crystal 6H-silicon carbide (SiC) in dependence on ion implantation dose, ion implantation experiments were performed using the focused ion beam technique. Raman spectroscopy and electron backscatter diffraction were used to characterize the 6H-SiC sample before and after ion implantation. Monte Carlo simulations were applied to verify the characterization results. Surface morphology of the implantation area was characterized by the scanning electron microscope (SEM) and atomic force microscope (AFM). The swelling effect induced by the low-dose ion implantation of 1014-1015 ions/cm² was investigated by AFM. The typical Raman bands of single-crystal 6H-SiC were analysed before and after implantation. The study revealed that the thickness of the amorphous damage layer was increased and then became saturated with increasing ion implantation dose. The critical dose threshold (2.81 × 1014-3.26 × 1014 ions/cm²) and saturated dose threshold (~5.31 × 1016 ions/cm²) for amorphization were determined. Damage formation mechanisms were discussed, and a schematic model was proposed to explain the damage formation
    corecore