14 research outputs found

    Au4Mn, a localized ferromagnet with strong spin-orbit coupling, long-range ferromagnetic exchange and high Curie temperature

    Full text link
    Metallic Mn-based alloys with a nearest-neighbor Mn-Mn distance greater than 0.4 nm exhibit large, well-localized magnetic moments. Here we investigate the magnetism of tetragonal Au4Mn with a Curie temperature of 385 K, where manganese has a spin moment of 4.1 muB and its orbital moment is quenched. Since 80% of the atoms are gold, the spin orbit interaction is strong and Au4Mn exhibits uniaxial magnetocrystalline anisotropy with surface maze domains at room temperature. The magnetic hardness parameter of 1.0 is sufficient to maintain the magnetization along the c-axis for a sample of any shape. Au also reduces the spin moment of Mn through 5d-3d orbital hybridization. An induced moment of 0.05 muB was found on Au under a pulsed field of 40 T. Density functional theory calculations indicate that the Mn-Mn exchange is mediated by spin-polarized gold 5d and 6p electrons. The distance-dependence shows that it is ferromagnetic or zero for the first ten shells of Mn neighbors out to 1.041 nm (64 atoms), and very weak and oscillatory thereafter

    New highly-anisotropic Rh-based Heusler compound for magnetic recording

    Get PDF
    The development of high-density magnetic recording media is limited by the superparamagnetism in very small ferromagnetic crystals. Hard magnetic materials with strong perpendicular anisotropy offer stability and high recording density. To overcome the difficulty of writing media with a large coercivity, heat assisted magnetic recording (HAMR) has been developed, rapidly heating the media to the Curie temperature Tc before writing, followed by rapid cooling. Requirements are a suitable Tc, coupled with anisotropic thermal conductivity and hard magnetic properties. Here we introduce Rh2CoSb as a new hard magnet with potential for thin film magnetic recording. A magnetocrystalline anisotropy of 3.6 MJm-3 is combined with a saturation magnetization of {\mu}0Ms = 0.52 T at 2 K (2.2 MJm-3 and 0.44 T at room-temperature). The magnetic hardness parameter of 3.7 at room temperature is the highest observed for any rare-earth free hard magnet. The anisotropy is related to an unquenched orbital moment of 0.42 {\mu}B on Co, which is hybridized with neighbouring Rh atoms with a large spin-orbit interaction. Moreover, the pronounced temperature-dependence of the anisotropy that follows from its Tc of 450 K, together with a high thermal conductivity of 20 Wm-1K-1, makes Rh2CoSb a candidate for development for heat assisted writing with a recording density in excess of 10 Tb/in2

    Determination of bulk domain structure and magnetization processes in bcc ferromagnetic alloys: Analysis of magnetostriction in Fe83Ga17

    No full text
    The ground state of macroscopic samples of magnetically ordered materials is a domain state because of magnetostatic energy or entropy, yet we have limited experimental means for imaging the bulk domain structure and the magnetization process directly. The common methods available reveal the domains at the surface or in electron- or x-ray transparent lamellae, not those in the bulk. The magnetization curve just reflects the vector sum of the moments of all the domains in the sample, but magnetostriction curves are more informative. They are strongly influenced by the domain structure in the unmagnetized state and its evolution during the magnetization process in an applied field. Here we report a method of determining the bulk domain structure in a cubic magnetostrictive material by combining magneto-optic Kerr microscopy with magnetostriction and magnetization measurements on single crystals as a function of applied field. We analyze the magnetostriction of Fe83Ga17 crystals in terms of a domain structure that is greatly influenced by sample shape and heat treatment. Saturation magnetostriction measurements are used to determine the fraction of domains orientated along the three ?100? axes in the initial state. Domain wall motion and rotation process have characteristic signatures in the magnetostriction curves, including those associated with the ?E effect and domain rotation through a ?110? auxetic direction
    corecore