80 research outputs found

    The functional loss of the retinoblastoma tumor suppressor is a common event in basal-like and Luminal B breast carcinomas

    Get PDF
    Abstract Introduction Breast cancers can be classified using whole genome expression into distinct subtypes that show differences in prognosis. One of these groups, the basal-like subtype, is poorly differentiated, highly metastatic, genomically unstable, and contains specific genetic alterations such as the loss of tumour protein 53 (TP53). The loss of the retinoblastoma tumour suppressor encoded by the RB1 locus is a well-characterised occurrence in many tumour types; however, its role in breast cancer is less clear with many reports demonstrating a loss of heterozygosity that does not correlate with a loss of RB1 protein expression. Methods We used gene expression analysis for tumour subtyping and polymorphic markers located at the RB1 locus to assess the frequency of loss of heterozygosity in 88 primary human breast carcinomas and their normal tissue genomic DNA samples. Results RB1 loss of heterozygosity was observed at an overall frequency of 39%, with a high frequency in basal-like (72%) and luminal B (62%) tumours. These tumours also concurrently showed low expression of RB1 mRNA. p16INK4a was highly expressed in basal-like tumours, presumably due to a previously reported feedback loop caused by RB1 loss. An RB1 loss of heterozygosity signature was developed and shown to be highly prognostic, and was potentially a predictive marker of response to neoadjuvant chemotherapy. Conclusions These results suggest that the functional loss of RB1 is common in basal-like tumours, which may play a key role in dictating their aggressive biology and unique therapeutic responses

    The potential diagnostic accuracy of urine formaldehyde levels in Alzheimer’s disease: A systematic review and meta-analysis

    Get PDF
    BackgroundFormaldehyde (FA), a toxic aldehyde, has been shown to be associated with a variety of cognitive disorders, including Alzheimer’s disease (AD). There is increasing evidence that FA levels are significantly increased in AD patients and may be involved in the pathological process of AD. The aim of this study was to assess the potential diagnostic value of urine FA levels in AD using meta-analysis techniques.MethodsOriginal reports of morning urine FA levels in AD patients and healthy controls (HCs) were included in the meta-analysis. Standardized mean differences (SMD) were calculated using a random-effects model, heterogeneity was explored using methodological, age, sex difference and sensitivity analyses, and receiver operating characteristic (ROC) curves were constructed to assess the diagnostic value of urine FA levels in AD.ResultsA total of 12 studies were included, and the urine FA levels of 874 AD patients and 577 HCs were reviewed. Compared with those in HCs, the FA levels were significantly increased in AD patients. The heterogeneity of the results did not affect their robustness, and results of the area under the curve (AUC) suggested that urine FA levels had good potential diagnostic value.ConclusionUrine FA levels are involved in AD disease progression and are likely to be useful as a potential biomarker for clinical auxiliary diagnosis. However, further studies are needed to validate the results of this study

    Genomic analysis identifies unique signatures predictive of brain, lung, and liver relapse

    Get PDF
    The ability to predict metastatic potential could be of great clinical importance, however, it is uncertain if predicting metastasis to specific vital organs is feasible. As a first step in evaluating metastatic predictions, we analyzed multiple primary tumors and metastasis pairs and determined that >90% of 298 gene expression signatures were found to be similarly expressed between matched pairs of tumors and metastases; therefore, primary tumors may be a good predictor of metastatic propensity. Next, using a dataset of >1,000 human breast tumor gene expression microarrays we determined that HER2-enriched subtype tumors aggressively spread to the liver, while basal-like and claudin-low subtypes colonize the brain and lung. Correspondingly, brain and lung metastasis signatures, along with embryonic stem cell, tumor initiating cell, and hypoxia signatures, were also strongly expressed in the basal-like and claudin-low tumors. Interestingly, low “Differentiation Scores,” or high expression of the aforementioned signatures, further predicted for brain and lung metastases. In total, these data identify that depending upon the organ of relapse, a combination of gene expression signatures most accurately predicts metastatic behavior

    EGFR associated expression profiles vary with breast tumor subtype

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The epidermal growth factor receptor (EGFR/HER1) and its downstream signaling events are important for regulating cell growth and behavior in many epithelial tumors types. In breast cancer, the role of EGFR is complex and appears to vary relative to important clinical features including estrogen receptor (ER) status. To investigate EGFR-signaling using a genomics approach, several breast basal-like and luminal epithelial cell lines were examined for sensitivity to EGFR inhibitors. An EGFR-associated gene expression signature was identified in the basal-like SUM102 cell line and was used to classify a diverse set of sporadic breast tumors.</p> <p>Results</p> <p><it>In vitro</it>, breast basal-like cell lines were more sensitive to EGFR inhibitors compared to luminal cell lines. The basal-like tumor derived lines were also the most sensitive to carboplatin, which acted synergistically with cetuximab. An EGFR-associated signature was developed <it>in vitro</it>, evaluated on 241 primary breast tumors; three distinct clusters of genes were evident <it>in vivo</it>, two of which were predictive of poor patient outcomes. These EGFR-associated poor prognostic signatures were highly expressed in almost all basal-like tumors and many of the HER2+/ER- and Luminal B tumors.</p> <p>Conclusion</p> <p>These results suggest that breast basal-like cell lines are sensitive to EGFR inhibitors and carboplatin, and this combination may also be synergistic. <it>In vivo</it>, the EGFR-signatures were of prognostic value, were associated with tumor subtype, and were uniquely associated with the high expression of distinct EGFR-RAS-MEK pathway genes.</p

    A compact VEGF signature associated with distant metastases and poor outcomes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tumor metastases pose the greatest threat to a patient's survival, and thus, understanding the biology of disseminated cancer cells is critical for developing effective therapies.</p> <p>Methods</p> <p>Microarrays and immunohistochemistry were used to analyze primary breast tumors, regional (lymph node) metastases, and distant metastases in order to identify biological features associated with distant metastases.</p> <p>Results</p> <p>When compared with each other, primary tumors and regional metastases showed statistically indistinguishable gene expression patterns. Supervised analyses comparing patients with distant metastases versus primary tumors or regional metastases showed that the distant metastases were distinct and distinguished by the lack of expression of fibroblast/mesenchymal genes, and by the high expression of a 13-gene profile (that is, the 'vascular endothelial growth factor (VEGF) profile') that included <it>VEGF, ANGPTL4, ADM </it>and the monocarboxylic acid transporter <it>SLC16A3</it>. At least 8 out of 13 of these genes contained HIF1α binding sites, many are known to be HIF1α-regulated, and expression of the VEGF profile correlated with HIF1α IHC positivity. The VEGF profile also showed prognostic significance on tests of sets of patients with breast and lung cancer and glioblastomas, and was an independent predictor of outcomes in primary breast cancers when tested in models that contained other prognostic gene expression profiles and clinical variables.</p> <p>Conclusion</p> <p>These data identify a compact <it>in vivo </it>hypoxia signature that tends to be present in distant metastasis samples, and which portends a poor outcome in multiple tumor types.</p> <p>This signature suggests that the response to hypoxia includes the ability to promote new blood and lymphatic vessel formation, and that the dual targeting of multiple cell types and pathways will be needed to prevent metastatic spread.</p

    Integrated DNA and RNA Sequencing Reveals Drivers of Endocrine Resistance in Estrogen Receptor Positive Breast Cancer

    Get PDF
    PURPOSE: Endocrine therapy resistance (ETR) remains the greatest challenge in treating patients with hormone receptor–positive breast cancer. We set out to identify molecular mechanisms underlying ETR through in-depth genomic analysis of breast tumors. EXPERIMENTAL DESIGN: We collected pre-treatment and sequential on-treatment tumor samples from 35 patients with estrogen receptor–positive breast cancer treated with neoadjuvant then adjuvant endocrine therapy; 3 had intrinsic resistance, 19 acquired resistance, and 13 remained sensitive. Response was determined by changes in tumor volume neoadjuvantly and by monitoring for adjuvant recurrence. Twelve patients received two or more lines of endocrine therapy, with subsequent treatment lines being initiated at the time of development of resistance to the previous endocrine therapy. DNA whole-exome sequencing and RNA sequencing were performed on all samples, totalling 169 unique specimens. DNA mutations, copy-number alterations, and gene expression data were analyzed through unsupervised and supervised analyses to identify molecular features related to ETR. RESULTS: Mutations enriched in ETR included ESR1 and GATA3. The known ESR1 D538G variant conferring ETR was identified, as was a rarer E380Q variant that confers endocrine hypersensitivity. Resistant tumors which acquired resistance had distinct gene expression profiles compared with paired sensitive tumors, showing elevated pathways including ER, HER2, GATA3, AKT, RAS, and p63 signaling. Integrated analysis in individual patients highlighted the diversity of ETR mechanisms. CONCLUSIONS: The mechanisms underlying ETR are multiple and characterized by diverse changes in both somatic genetic and transcriptomic profiles; to overcome resistance will require an individualized approach utilizing genomic and genetic biomarkers and drugs tailored to each patient

    MapSplice: Accurate Mapping of RNA-Seq Reads for Splice Junction Discovery

    Get PDF
    The accurate mapping of reads that span splice junctions is a critical component of all analytic techniques that work with RNA-seq data. We introduce a second generation splice detection algorithm, MapSplice, whose focus is high sensitivity and specificity in the detection of splices as well as CPU and memory efficiency. MapSplice can be applied to both short (\u3c75 bp) and long reads (≥75 bp). MapSplice is not dependent on splice site features or intron length, consequently it can detect novel canonical as well as non-canonical splices. MapSplice leverages the quality and diversity of read alignments of a given splice to increase accuracy. We demonstrate that MapSplice achieves higher sensitivity and specificity than TopHat and SpliceMap on a set of simulated RNA-seq data. Experimental studies also support the accuracy of the algorithm. Splice junctions derived from eight breast cancer RNA-seq datasets recapitulated the extensiveness of alternative splicing on a global level as well as the differences between molecular subtypes of breast cancer. These combined results indicate that MapSplice is a highly accurate algorithm for the alignment of RNA-seq reads to splice junctions. Software download URL: http://www.netlab.uky.edu/p/bioinfo/MapSplice

    Tumor Evolution in Two Patients with Basal-like Breast Cancer: A Retrospective Genomics Study of Multiple Metastases

    Get PDF
    Metastasis is the main cause of cancer patient deaths and remains a poorly characterized process. It is still unclear when in tumor progression the ability to metastasize arises and whether this ability is inherent to the primary tumor or is acquired well after primary tumor formation. Next-generation sequencing and analytical methods to define clonal heterogeneity provide a means for identifying genetic events and the temporal relationships between these events in the primary and metastatic tumors within an individual

    Characterization of cell lines derived from breast cancers and normal mammary tissues for the study of the intrinsic molecular subtypes

    Get PDF
    Five molecular subtypes (luminal A, luminal B, HER2-enriched, basal-like, and claudin-low) with clinical implications exist in breast cancer. Here, we evaluated the molecular and phenotypic relationships of (1) a large in vitro panel of human breast cancer cell lines (BCCLs), human mammary fibroblasts (HMFs), and human mammary epithelial cells (HMECs); (2) in vivo breast tumors; (3) normal breast cell subpopulations; (4) human embryonic stem cells (hESCs); and (5) bone marrow-derived mesenchymal stem cells (hMSC). First, by integrating genomic data of 337 breast tumor samples with 93 cell lines we were able to identify all the intrinsic tumor subtypes in the cell lines, except for luminal A. Secondly, we observed that the cell lines recapitulate the differentiation hierarchy detected in the normal mammary gland, with claudin-low BCCLs and HMFs cells showing a stromal phenotype, HMECs showing a mammary stem cell/bipotent progenitor phenotype, basal-like cells showing a luminal progenitor phenotype, and luminal B cell lines showing a mature luminal phenotype. Thirdly, we identified basal-like and highly migratory claudin-low subpopulations of cells within a subset of triple-negative BCCLs (SUM149PT, HCC1143, and HCC38). Interestingly, both subpopulations within SUM149PT were enriched for tumor-initiating cells, but the basal-like subpopulation grew tumors faster than the claudin-low subpopulation. Finally, claudin-low BCCLs resembled the phenotype of hMSCs, whereas hESCs cells showed an epithelial phenotype without basal or luminal differentiation. The results presented here help to improve our understanding of the wide range of breast cancer cell line models through the appropriate pairing of cell lines with relevant in vivo tumor and normal cell counterparts.Electronic supplementary materialThe online version of this article (doi:10.1007/s10549-013-2743-3) contains supplementary material, which is available to authorized users

    Classification and risk stratification of invasive breast carcinomas using a real-time quantitative RT-PCR assay

    Get PDF
    INTRODUCTION: Predicting the clinical course of breast cancer is often difficult because it is a diverse disease comprised of many biological subtypes. Gene expression profiling by microarray analysis has identified breast cancer signatures that are important for prognosis and treatment. In the current article, we use microarray analysis and a real-time quantitative reverse-transcription (qRT)-PCR assay to risk-stratify breast cancers based on biological 'intrinsic' subtypes and proliferation. METHODS: Gene sets were selected from microarray data to assess proliferation and to classify breast cancers into four different molecular subtypes, designated Luminal, Normal-like, HER2+/ER-, and Basal-like. One-hundred and twenty-three breast samples (117 invasive carcinomas, one fibroadenoma and five normal tissues) and three breast cancer cell lines were prospectively analyzed using a microarray (Agilent) and a qRT-PCR assay comprised of 53 genes. Biological subtypes were assigned from the microarray and qRT-PCR data by hierarchical clustering. A proliferation signature was used as a single meta-gene (log(2 )average of 14 genes) to predict outcome within the context of estrogen receptor status and biological 'intrinsic' subtype. RESULTS: We found that the qRT-PCR assay could determine the intrinsic subtype (93% concordance with microarray-based assignments) and that the intrinsic subtypes were predictive of outcome. The proliferation meta-gene provided additional prognostic information for patients with the Luminal subtype (P = 0.0012), and for patients with estrogen receptor-positive tumors (P = 3.4 × 10(-6)). High proliferation in the Luminal subtype conferred a 19-fold relative risk of relapse (confidence interval = 95%) compared with Luminal tumors with low proliferation. CONCLUSION: A real-time qRT-PCR assay can recapitulate microarray classifications of breast cancer and can risk-stratify patients using the intrinsic subtype and proliferation. The proliferation meta-gene offers an objective and quantitative measurement for grade and adds significant prognostic information to the biological subtypes
    corecore