415 research outputs found

    Mobicom Poster: Evaluating Location Predictors with Extensive Wi-Fi Mobility Data

    Get PDF
    A fundamental problem in mobile computing and wireless networks is the ability to track and predict the location of mobile devices. An accurate location predictor can significantly improve the performance or reliability of wireless network protocols, the wireless network infrastructure itself, and many applications in pervasive computing. These improvements lead to a better user experience, to a more cost-effective infrastructure, or both. Location prediction has been proposed in many areas of wireless cellular networks as a means of enhancing performance, including better mobility management, improved assignment of cells to location areas, more efficient paging, and call admission control. To the best of our knowledge, no other researchers have evaluated location predictors with extensive mobility data from real users. In this poster we compare the most significant domain-independent predictors using a large set of user mobility data collected at Dartmouth College. In this data set, we recorded for two years the sequence of wireless cells (Wi-Fi access points) frequented by more than 6000 users. We found that the simple Markov predictors performed as well or better than the more complicated LZ predictors, with smaller data structures

    Application of Fireproof Coating for New Energy Vehicle Battery Pack

    Get PDF
    In the development process of new energy vehicles, the battery pack is one of the key parts, and the safety of the battery pack has always been an important factor affecting the application range and market sales of new energy vehicles. In order to improve the safety of battery packs, fireproof coatings are widely used on the surface of battery packs. This paper introduces the application of fireproof coatings in new energy vehicles by analyzing the composition and function of fireproof coatings

    Evaluating Next Cell Predictors with Extensive Wi-Fi Mobility Data

    Get PDF
    Location is an important feature for many applications, and wireless networks can better serve their clients by anticipating client mobility. As a result, many location predictors have been proposed in the literature, though few have been evaluated with empirical evidence. This paper reports on the results of the first extensive empirical evaluation of location predictors, using a two-year trace of the mobility patterns of over 6,000 users on Dartmouth\u27s campus-wide Wi-Fi wireless network. The surprising results provide critical evidence for anyone designing or using mobility predictors. \par We implemented and compared the prediction accuracy of several location predictors drawn from four major families of domain-independent predictors, namely Markov-based, compression-based, PPM, and SPM predictors. We found that low-order Markov predictors performed as well or better than the more complex and more space-consuming compression-based predictors

    It takes two to tango : molecular links between plant immunity and brassinosteroid signalling

    Get PDF
    In response to the invasion of microorganisms, plants actively balance their resources for growth and defence, thus ensuring their survival. The regulatory mechanisms underlying plant immunity and growth operate through complex networks, in which the brassinosteroid phytohormone is one of the central players. In the past decades, a growing number of studies have revealed a multi-layered crosstalk between brassinosteroid-mediated growth and plant immunity. In this Review, by means of the tango metaphor, we immerse ourselves into the intimate relationship between brassinosteroid and plant immune signalling pathways that is tailored by the lifestyle of the pathogen and modulated by other phytohormones. The plasma membrane is the unique stage where brassinosteroid and immune signals are dynamically integrated and where compartmentalization into nanodomains that host distinct protein consortia is crucial for the dance. Shared downstream signalling components and transcription factors relay the tango play to the nucleus to activate the plant defence response and other phytohormonal signalling pathways for the finale. Understanding how brassinosteroid and immune signalling pathways are integrated in plants will help develop strategies to minimize the growth-defence trade-off, a key challenge for crop improvement

    Inverse Kinematic Solutions of Dual Redundant Camera Robot Based on Genetic Algorithm

    Get PDF
    Inverse kinematic solutions for a dual redundant camera robot in position are examined in order to alleviate operation difficulty and reduce time. The inverse kinematic algorithm is based on a basic genetic algorithm, and the genetic algorithm which is used to solve the problem of a redundant robot is mainly optimized in the joint space. On this basis, the genetic algorithm improvement strategies are studied. In this paper, a genetic algorithm with constrained 2 redundant degrees of freedom (DOF) is proposed through setting 2 parameter variables, with more flexible structure of optimization objective function and more efficient algorithm than basic genetic algorithm. Finally, the result of inverse kinematic algorithm is achieved in terms of the physical prototype

    Active Fragment of Veronica ciliata

    Get PDF
    Excessive amounts of reactive oxygen species (ROS) in the body are a key factor in the development of hepatopathies such as hepatitis. The aim of this study was to assess the antioxidation effect in vitro and hepatoprotective activity of the active fragment of Veronica ciliata Fisch. (VCAF). Antioxidant assays (DPPH, superoxide, and hydroxyl radicals scavenging) were conducted, and hepatoprotective effects through the application of tert-butyl hydroperoxide- (t-BHP-) induced oxidative stress injury in HepG2 cells were evaluated. VCAF had high phenolic and flavonoid contents and strong antioxidant activity. From the perspective of hepatoprotection, VCAF exhibited a significant protective effect on t-BHP-induced HepG2 cell injury, as indicated by reductions in cytotoxicity and the levels of ROS, 8-hydroxydeoxyguanosine (8-OHdG), and protein carbonyls. Further study demonstrated that VCAF attenuated the apoptosis of t-BHP-treated HepG2 cells by suppressing the activation of caspase-3 and caspase-8. Moreover, it significantly decreased the levels of ALT and AST, increased the activities of acetyl cholinesterase (AChE), glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT), and increased total antioxidative capability (T-AOC). Collectively, we concluded that VCAF may be a considerable candidate for protecting against liver injury owing to its excellent antioxidant and antiapoptosis properties

    Certificateless Key Insulated Encryption: Cryptographic Primitive for Achieving Key-escrow free and Key-exposure Resilience

    Get PDF
    Certificateless encryption (CLE) alleviates the heavy certificate management in traditional public key encryption and the key escrow problem in the ID-based encryption simultaneously. Current CLE schemes assumed that the user’s secret key is absolutely secure. Unfortunately, this assumption is too strong in case the CLE is deployed in the hostile setting and the leakage of secret key is inevitable. In this paper, we present a new concept called an certificateless key insulated encryption scheme (CL-KIE). We argue that this is an important cryptographic primitive that can be used to achieve key-escrow free and key-exposure resilience. We also present an efficient CL-KIE scheme based on bilinear pairing. After that, the security of our scheme is proved under the Bilinear Diffie-Hellman assumption in the random oracle model. Certificateless encryption (CLE) alleviates the heavy certificate management in traditional public key encryption and the key escrow problem in the ID-based encryption simultaneously. Current CLE schemes assumed that the user’s secret key is absolutely secure. Unfortunately, this assumption is too strong in case the CLE is deployed in the hostile setting and the leakage of the secret key is inevitable. In this paper, we present a new concept called a certificateless key insulated encryption scheme (CL-KIE). We argue that this is an important cryptographic primitive that can be used to achieve key-escrow free and key-exposure resilience. We also present an efficient CL-KIE scheme based on bilinear pairing. After that, the security of our scheme is proved under the Bilinear DiffieHellman assumption in the random oracle model

    Biomass-derived carbons for sodium-ion batteries and sodium-ion capacitors

    Get PDF
    In the past decade, the rapid development of portable electronic devices, electric vehicles, and electrical devices has stimulated extensive interest in fundamental research and the commercialization of electrochemical energy-storage systems. Biomass-derived carbon has garnered significant research attention as an efficient, inexpensive, and eco-friendly active material for energy-storage systems. Therefore, high-performance carbonaceous materials, derived from renewable sources, have been utilized as electrode materials in sodium-ion batteries and sodium-ion capacitors. Herein, the charge-storage mechanism and utilization of biomass-derived carbon for sodium storage in batteries and capacitors are summarized. In particular, the structure–performance relationship of biomass-derived carbon for sodium storage in the form of batteries and capacitors is discussed. Despite the fact that further research is required to optimize the process and application of biomass-derived carbon in energy-storage devices, the current review demonstrates the potential of carbonaceous materials for next-generation sodium-related energy-storage applications.</p

    Bacterial Effectors Target the Common Signaling Partner BAK1 to Disrupt Multiple MAMP Receptor-Signaling Complexes and Impede Plant Immunity

    Get PDF
    SummarySuccessful pathogens have evolved strategies to interfere with host immune systems. For example, the ubiquitous plant pathogen Pseudomonas syringae injects two sequence-distinct effectors, AvrPto and AvrPtoB, to intercept convergent innate immune responses stimulated by multiple microbe-associated molecular patterns (MAMPs). However, the direct host targets and precise molecular mechanisms of bacterial effectors remain largely obscure. We show that AvrPto and AvrPtoB bind the Arabidopsis receptor-like kinase BAK1, a shared signaling partner of both the flagellin receptor FLS2 and the brassinosteroid receptor BRI1. This targeting interferes with ligand-dependent association of FLS2 with BAK1 during infection. It also impedes BAK1-dependent host immune responses to diverse other MAMPs and brassinosteroid signaling. Significantly, the structural basis of AvrPto-BAK1 interaction appears to be distinct from AvrPto-Pto association required for effector-triggered immunity. These findings uncover a unique strategy of bacterial pathogenesis where virulence effectors block signal transmission through a key common component of multiple MAMP-receptor complexes
    • …
    corecore