161 research outputs found

    THE CORRELATION BETWEEN PSYCHIATRIC DISORDERS AND COVID-19: A NARRATIVE REVIEW

    Get PDF
    Since December 2019, the havoc caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has increased exponentially in a short period of time. As the COVID-19 pandemic is raging around the world, scientists are trying to reveal its mysteriousness. Although COVID-19 is predominantly a respiratory disease, the most common symptoms are fever, dry cough, and fatigue, but extrapulmonary manifestations are increasingly recognized. Recent studies have shown that there is a strong genetic correlation between one or more psychiatric disorders and the occurrence of SARS-CoV-2 infection. Historical epidemiological perspectives and recent neurobiological evidence link infection and psychosis. What is the relationship between COVID-19 and psychiatric disorders? In this article, we will review the correlation between COVID-19 and psychoses, the possible reasons, and the possible pathophysiological mechanisms. The purpose of this review is to provide a reference for clinicians to make correct judgment and treatment when facing patients with COVID-19 and/or psychiatric disorders

    Activity-aware Human Mobility Prediction with Hierarchical Graph Attention Recurrent Network

    Full text link
    Human mobility prediction is a fundamental task essential for various applications, including urban planning, location-based services and intelligent transportation systems. Existing methods often ignore activity information crucial for reasoning human preferences and routines, or adopt a simplified representation of the dependencies between time, activities and locations. To address these issues, we present Hierarchical Graph Attention Recurrent Network (HGARN) for human mobility prediction. Specifically, we construct a hierarchical graph based on all users' history mobility records and employ a Hierarchical Graph Attention Module to capture complex time-activity-location dependencies. This way, HGARN can learn representations with rich human travel semantics to model user preferences at the global level. We also propose a model-agnostic history-enhanced confidence (MAHEC) label to focus our model on each user's individual-level preferences. Finally, we introduce a Temporal Module, which employs recurrent structures to jointly predict users' next activities (as an auxiliary task) and their associated locations. By leveraging the predicted future user activity features through a hierarchical and residual design, the accuracy of the location predictions can be further enhanced. For model evaluation, we test the performances of our HGARN against existing SOTAs in both the recurring and explorative settings. The recurring setting focuses on assessing models' capabilities to capture users' individual-level preferences, while the results in the explorative setting tend to reflect the power of different models to learn users' global-level preferences. Overall, our model outperforms other baselines significantly in all settings based on two real-world human mobility data benchmarks. Source codes of HGARN are available at https://github.com/YihongT/HGARN.Comment: 11 page

    Auricle shaping using 3D printing and autologous diced cartilage.

    Get PDF
    ObjectiveTo reconstruct the auricle using a porous, hollow, three-dimensional (3D)-printed mold and autologous diced cartilage mixed with platelet-rich plasma (PRP).MethodsMaterialise Magics v20.03 was used to design a 3D, porous, hollow auricle mold. Ten molds were printed by selective laser sintering with polyamide. Cartilage grafts were harvested from one ear of a New Zealand rabbit, and PRP was prepared using 10 mL of auricular blood from the same animal. Ear cartilage was diced into 0.5- to 2.0-mm pieces, weighed, mixed with PRP, and then placed inside the hollow mold. Composite grafts were then implanted into the backs of respective rabbits (n = 10) for 4 months. The shape and composition of the diced cartilage were assessed histologically, and biomechanical testing was used to determine stiffness.ResultsThe 3D-printed auricle molds were 0.6-mm thick and showed connectivity between the internal and external surfaces, with round pores of 0.1 to 0.3 cm. After 4 months, the diced cartilage pieces had fused into an auricular shape with high fidelity to the anthropotomy. The weight of the diced cartilage was 5.157 ± 0.230 g (P > 0.05, compared with preoperative). Histological staining showed high chondrocyte viability and the production of collagen II, glycosaminoglycans, and other cartilaginous matrix components. In unrestricted compression tests, auricle stiffness was 0.158 ± 0.187 N/mm, similar to that in humans.ConclusionAuricle grafts were constructed successfully through packing a 3D-printed, porous, hollow auricle mold with diced cartilage mixed with PRP. The auricle cartilage contained viable chondrocytes, appropriate extracellular matrix components, and good mechanical properties.Levels of evidenceNA. Laryngoscope, 129:2467-2474, 2019

    KinD-LCE Curve Estimation And Retinex Fusion On Low-Light Image

    Full text link
    Low-light images often suffer from noise and color distortion. Object detection, semantic segmentation, instance segmentation, and other tasks are challenging when working with low-light images because of image noise and chromatic aberration. We also found that the conventional Retinex theory loses information in adjusting the image for low-light tasks. In response to the aforementioned problem, this paper proposes an algorithm for low illumination enhancement. The proposed method, KinD-LCE, uses a light curve estimation module to enhance the illumination map in the Retinex decomposed image, improving the overall image brightness. An illumination map and reflection map fusion module were also proposed to restore the image details and reduce detail loss. Additionally, a TV(total variation) loss function was applied to eliminate noise. Our method was trained on the GladNet dataset, known for its diverse collection of low-light images, tested against the Low-Light dataset, and evaluated using the ExDark dataset for downstream tasks, demonstrating competitive performance with a PSNR of 19.7216 and SSIM of 0.8213.Comment: Accepted by Signal, Image and Video Processin

    Query-dominant User Interest Network for Large-Scale Search Ranking

    Full text link
    Historical behaviors have shown great effect and potential in various prediction tasks, including recommendation and information retrieval. The overall historical behaviors are various but noisy while search behaviors are always sparse. Most existing approaches in personalized search ranking adopt the sparse search behaviors to learn representation with bottleneck, which do not sufficiently exploit the crucial long-term interest. In fact, there is no doubt that user long-term interest is various but noisy for instant search, and how to exploit it well still remains an open problem. To tackle this problem, in this work, we propose a novel model named Query-dominant user Interest Network (QIN), including two cascade units to filter the raw user behaviors and reweigh the behavior subsequences. Specifically, we propose a relevance search unit (RSU), which aims to search a subsequence relevant to the query first and then search the sub-subsequences relevant to the target item. These items are then fed into an attention unit called Fused Attention Unit (FAU). It should be able to calculate attention scores from the ID field and attribute field separately, and then adaptively fuse the item embedding and content embedding based on the user engagement of past period. Extensive experiments and ablation studies on real-world datasets demonstrate the superiority of our model over state-of-the-art methods. The QIN now has been successfully deployed on Kuaishou search, an online video search platform, and obtained 7.6% improvement on CTR.Comment: 10 page

    High expression level of the FTH1 gene is associated with poor prognosis in children with non-M3 acute myeloid leukemia

    Get PDF
    Acute myelogenous leukemia (AML) is a disease that severely affects the physical health of children. Thus, we aimed to identify biomarkers associated with AML prognosis in children. Using transcriptomics on an mRNA dataset from 27 children with non-M3 AML, we selected genes from among those with the top 5000 median absolute deviation (MAD) values for subsequent analysis which showed that two modules were associated with AML risk groups. Thus, enrichment analysis was performed using genes from these modules. A one-way Cox analysis was performed on a dataset of 149 non-M3 AML patients downloaded from the TCGA. This identified four genes as significant: FTH1, RCC2, ABHD17B, and IRAK1. Through survival analysis, FTH1 was identified as a key gene associated with AML prognosis. We verified the proliferative and regulatory effects of ferroptosis on MOLM-13 and THP-1 cells using Liproxstatin-1 and Erastin respectively by CCK-8 and flow cytometry assays. Furthermore, we assayed expression levels of FTH1 in MOLM-13 and THP-1 cells after induction and inhibition of ferroptosis by real-time quantitative PCR, which showed that upregulated FTH1 expression promoted proliferation and inhibited apoptosis in leukemia cells. In conclusion, high expression of FTH1 promoted proliferation and inhibited apoptosis of leukemic cells through the ferroptosis pathway and is thus a potential risk factor that affects the prognosis of non-M3 AML in children

    The Effect of Different Trigger Thresholds on the Quality of Pulmonary Artery CT Angiography Images

    Get PDF
    Objective: To study the effect of different triggering thresholds on the quality of pulmonary artery CT angiography (CTA) images. Materials and Methods: A prospective study included 112 patients with suspected pulmonary embolism admitted to Tinglin Hospital in the Jinshan District of Shanghai between December 2021 to April 2023. Among them, there were 49 males and 63 females aged between 37 and 93 years, with an average age of 64.28 years. Patients were randomly assigned to three groups based on trigger thresholds. Group A included 38 cases with a trigger threshold of 120 HU, Group B included 37 cases with a trigger threshold of 200 HU, and Group C included 37 cases with a trigger threshold of 250 HU. There were no statistically significant differences in gender, age, height, or weight among the three groups. One-way ANOVA was used to compare the CT values and subjective image quality scores of the superior vena cava, main pulmonary artery, left and right pulmonary arteries, and right pulmonary vein among the three groups. Result: There were no statistical differences in the CT values of the main pulmonary artery and left and right pulmonary arteries among the three groups, but there were statistical differences in the CT values of the superior vena cava and right pulmonary vein. There was a statistical difference in the subjective score of image quality among the three groups; the subjective evaluation of the obtained image quality between the two physicians was highly consistent (κ=0.78). Conclusion: When the triggering threshold of pulmonary artery CTA is 200 HU, it can not only ensure the concentration of pulmonary artery trunk CT value meets the clinical diagnosis, but also ensures that the contrast agent is fully injected into the 5~6 grade branches, leading to less retention of superior vena cava, weak pulmonary vein development, and the highest image quality of pulmonary artery CTA

    An invasive species erodes the performance of coastal wetland protected areas

    Get PDF
    The world has increasingly relied on protected areas (PAs) to rescue highly valued ecosystems from human activities, but whether PAs will fare well with bioinvasions remains unknown. By analyzing three decades of seven of the largest coastal PAs in China, including World Natural Heritage and/or Wetlands of International Importance sites, we show that, although PAs are achieving success in rescuing iconic wetlands and critical shorebird habitats from once widespread reclamation, this success is counteracted by escalating plant invasions. Plant invasions were not only more extensive in PAs than non-PA controls but also undermined PA performance by, without human intervention, irreversibly replacing expansive native wetlands (primarily mudflats) and precluding successional formation of new native marshes. Exotic species are invading PAs globally. This study across large spatiotemporal scales highlights that the consequences of bioinvasions for humanity’s major conservation tool may be more profound, far reaching, and critical for management than currently recognized

    A Multiclass Radiomics Method-Based WHO Severity Scale for Improving COVID-19 Patient Assessment and Disease Characterization From CT Scans.

    Get PDF
    OBJECTIVES The aim of this study was to evaluate the severity of COVID-19 patients' disease by comparing a multiclass lung lesion model to a single-class lung lesion model and radiologists' assessments in chest computed tomography scans. MATERIALS AND METHODS The proposed method, AssessNet-19, was developed in 2 stages in this retrospective study. Four COVID-19-induced tissue lesions were manually segmented to train a 2D-U-Net network for a multiclass segmentation task followed by extensive extraction of radiomic features from the lung lesions. LASSO regression was used to reduce the feature set, and the XGBoost algorithm was trained to classify disease severity based on the World Health Organization Clinical Progression Scale. The model was evaluated using 2 multicenter cohorts: a development cohort of 145 COVID-19-positive patients from 3 centers to train and test the severity prediction model using manually segmented lung lesions. In addition, an evaluation set of 90 COVID-19-positive patients was collected from 2 centers to evaluate AssessNet-19 in a fully automated fashion. RESULTS AssessNet-19 achieved an F1-score of 0.76 ± 0.02 for severity classification in the evaluation set, which was superior to the 3 expert thoracic radiologists (F1 = 0.63 ± 0.02) and the single-class lesion segmentation model (F1 = 0.64 ± 0.02). In addition, AssessNet-19 automated multiclass lesion segmentation obtained a mean Dice score of 0.70 for ground-glass opacity, 0.68 for consolidation, 0.65 for pleural effusion, and 0.30 for band-like structures compared with ground truth. Moreover, it achieved a high agreement with radiologists for quantifying disease extent with Cohen κ of 0.94, 0.92, and 0.95. CONCLUSIONS A novel artificial intelligence multiclass radiomics model including 4 lung lesions to assess disease severity based on the World Health Organization Clinical Progression Scale more accurately determines the severity of COVID-19 patients than a single-class model and radiologists' assessment
    corecore