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High expression level of the FTH1
gene is associated with poor
prognosis in children with
non-M3 acute myeloid leukemia

Junlin Zhang1, Liying Liu1, Jinshuang Wei1, Xiaojing Wu1,
Jianming Luo1,2, Hongying Wei1, Liao Ning1,2* and Yunyan He1,2*

1First Affiliated Hospital of Guangxi Medical University, Nanning, China, 2The Key Laboratory of
Children’s Disease Research in Guangxi’s Colleges and Universities, Education Department of Guangxi
Zhuang Autonomous Region, Nanning, China
Acute myelogenous leukemia (AML) is a disease that severely affects the physical

health of children. Thus, we aimed to identify biomarkers associated with AML

prognosis in children. Using transcriptomics on an mRNA dataset from 27 children

with non-M3 AML, we selected genes from among those with the top 5000

median absolute deviation (MAD) values for subsequent analysis which showed

that two modules were associated with AML risk groups. Thus, enrichment analysis

was performed using genes from these modules. A one-way Cox analysis was

performed on a dataset of 149 non-M3 AML patients downloaded from the TCGA.

This identified four genes as significant: FTH1, RCC2, ABHD17B, and IRAK1.

Through survival analysis, FTH1 was identified as a key gene associated with AML

prognosis. We verified the proliferative and regulatory effects of ferroptosis on

MOLM-13 and THP-1 cells using Liproxstatin-1 and Erastin respectively by CCK-8

and flow cytometry assays. Furthermore, we assayed expression levels of FTH1 in

MOLM-13 and THP-1 cells after induction and inhibition of ferroptosis by real-time

quantitative PCR, which showed that upregulated FTH1 expression promoted

proliferation and inhibited apoptosis in leukemia cells. In conclusion, high

expression of FTH1 promoted proliferation and inhibited apoptosis of leukemic

cells through the ferroptosis pathway and is thus a potential risk factor that affects

the prognosis of non-M3 AML in children.
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1 Introduction

Acute myeloid leukemia (AML) is a malignant bone marrow

disease (1) that is characterized by clonal expansion as well as

stagnated differentiation of immature myeloid cells. About one-fifth

of children with acute leukemia have AML, and this incidence is on

the rise (2). Although the overall survival rate of children under the

age of 19 is about 65% (3), AML contributes to half the mortality rate

of childhood leukemia (4). Genetic mutations are the main

pathogenic factor (5), in AML, and their identification is thus

important in the risk stratification of patients and the

determination of appropriate treatment —current treatment is

mostly intensive chemotherapy and hematopoietic stem cell

transplantation, which both yield poor prognoses. Although there

have been meaningful breakthroughs into the genetics of pediatric

AML and how it affects the pathophysiological and biological effects

on the disease, these are yet to be translated into standard treatment

regimens (6).

In the prognostic classification of AML, the survival rate of child

in the poor-risk group was actually lower than that of patients in the

intermediate and low-risk groups (7, 8). Therefore, the aim of this

study was the identification of novel biomarkers for prognostic risk

grouping of pediatric AML patients, which possibly facilitate better

outcome prediction and individualized treatments. Weighted gene

co-expression network analysis (WGCNA) that identifies correlated

gene clusters (modules), has been applied to identify biomarkers for

ovarian (9) and breast cancers[ (10), demonstrating the feasibility of

its use to identify biomarkers for AML.

Ferroptosis, which is a brand of cell death that is not only

dependent on intracellular iron but is also morphologically,

biochemically, together with genetically distinct from apoptosis,
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necrosis, as well as autophagy. Ferroptosis plays a crucial regulatory

role in the development,along with progression of many diseases,

such as tumors, neurological disorders, acute kidney injury, and

ischemia/reperfusion. Thus, mitigating disease progression by

activating or blocking ferritin production pathways is a possible

novel therapeutic strategy for many diseases (11, 12).

In this study, we collected then analyzed with bioinformatics,

transcriptome sequencing data from 27 child AML patients and from

the TCGA database (https://portal.gdc.cancer.gov/). We identified 60

genes that were potentially associated with risk classification of AML

as per WGCNA. Subsequently, we identified FTH1 (Ferritin heavy

chain 1) as a key gene associated with survival in AML patients, and

confirmed in vitro, its effect on the proliferation of leukemic cells.
2 Materials and methods

2.1 Gene expression data collection

Included in the Collaboration Group of Affiliated Children’s Hospital

of Suzhou University, 27 non-M3 AML patients admitted to the First

Affiliated Hospital of Guangxi Medical University. Transcriptome

sequencing data and clinical information were collected from 27

pediatric non-M3 AML patients admitted to between August 2019 and

August 2021. Transcriptome sequencing data and clinical information

for 149 children with non-M3-AML were obtained from the TCGA

database. The hospital dataset was used for WGCNA to identify

candidate key genes, whereas TCGA data were used for survival

analysis to further identify prognostic genes. Clinical traits are shown

in Table 1. Six non-M3 AML patients and six normal people diagnosed
TABLE 1 Demographic and clinical characteristics of AML patients.

Characteristics Hospital TCGA

N 27 149

Age, year (median, range) 9.7 (1.5-14.0) 9.3 (0.4-22.6)

Gender (%)

-Female 13 (48.1) 75 (50.3)

-Male 14 (51.9) 74 (49.7)

WBC

->100×109/L 3 38

-≤100×109/L 24 111

Median OS (days) 500 1464

Group

-favorable 5 33

-intermediate 9 57

-poor 13 59

t (8;21)

-Yes 6 21

(Continued)
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TABLE 1 Continued

Characteristics Hospital TCGA

-No 21 124

- Unknown 0 4

t (6;9)

-Yes 1 1

-No 26 144

- Unknown 0 4

t (6;11) (q27; q23)

-Yes 1 3

-No 26 142

- Unknown 0 4

t (9;11) (p22; q23)

-Yes 1 13

-No 26 131

- Unknown 0 5

Inv (16)

-Yes 3 28

-No 24 117

- Unknown 0 4

MLL

-Yes 4 24

-No 23 121

- Unknown 0 4

WT1 mutation

-Yes 2 10

-No 25 134

- Unknown 0 5

FLT3-ITD

-Yes 4 13

-No 23 135

- Unknown 0 1

FAB

-M0 0 4

-M1 0 15

-M2 5 35

-M4 8 43

-M5 12 29

-M6 0 2

-M7 2 7

-NOS 0 6

- Unknown 0 8
F
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WBC, white blood cell; OS, Overall Survival; FAB, French-American-British cooperative group.
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and treated in the First Affiliated Hospital of Guangxi Medical University

were collected for subsequent experimental verification.
2.2 WGCNA

Using median absolute deviation (MAD) values (13). The top

5000 genes were identified from the 27-patient dataset. A scale-free

co-expression network was built by WGCNA package in R software,

with b set to 14 (scale-free R2 = 0.93) to protect a scale-free network.

Next, the adjacency matrix was converted to a topological overlap

matrix (TOM) (14) to cluster genes with analogous expression

profiles into modules by a mean linkage hierarchical clustering

approach. Notably, the minimum number of genes per gene

network module (15) was set to 30, and the Dynamic cut tree

method algorithm was used to determine the gene network modules.
2.3 Identification of candidate biomarkers

Key genes in co-expression networks are those that have high

connectivity within network modules and are significantly associated

with biological functions. Gene connectivity is measured by the absolute

value of the module membership (MM) score, which represents the

Pearson correlation coefficient between a particular gene and the module

trait value. We selected modules whose gene modules met a p-value less

than 0.05, had clinical traits, and calculated the gene significance (GS)

scores in absolute values, which indicated the correlation between the

genes in these modules and each phenotype (16). Candidate genes were

identified by MM and GS scores.
2.4 Functional enrichment analysis

On the ground of the protein-protein interactions (PPI) from

STRING (https://cn.string-db.org), candidate biomarker genes were

constructed in each clinically vital module and visualized using

Cytoscape (17). In addition, Gene ontology (GO) enrichment

analysis and Kyoto encyclopedia of genes and genomes (KEGG)

pathway analysis were performed using R package clusterProfiler.
2.5 Determination of the prognostic
value of genes

Sixty candidate genes from the 27 leukemia patient dataset, were

subjected to univariate Cox regression analysis in the TCGA dataset
Frontiers in Oncology 04
using the SURVIVAL package on R software, and log-rank p-values

as well as hazard ratio (HR) were subsequently calculated. In the end,

genes that were statistically significantly associated (p<0.05) with

prognosis in both datasets were used as biomarkers associated with

survival and further investigated using in vitro experiments.
2.6 Cell culture and drug intervention

MOLM-13andTHP-1cellswere cultured inRPMI1640medium,which

also containing 10% FBS and 1% penicillin-streptomycin at 37°C along with

5%CO2.FTH1was targeted for inhibitionofferroptosis (18)Liproxstatin-1 (1

mM) and Erastin (100 mM) interventions were respectively used as an

influential inhibitor and agonist of ferroptosis (19) in MOLM-13 and THP-

1 cells. AML cell lines are shown in Table 2.
2.7 CCK-8 detection

Ninety-six-well plates were inoculated with MOLM-13 and THP-1

cells (3000 cells/well) in RPMI 1640 media supplemented with CCK-8

reagent for 2 h. The optical density at 450 nm (OD450nm) ofMOLM-13

and THP-1 cells at 0 h, 12 h, 24 h, 36 h, 48 h, and 60 h after inoculation.

All the experiments were repeated four times with similar results.
2.8 Cell apoptosis detection by
flow cytometry

For the purpose of verify the effect of ferroptosis on apoptosis in

leukemia cells, we collected MOLM-13 and THP-1 cells and stained

them with the Annexin V-FITC/PI Apoptosis Detection Kit (BD

Bioscience, San Jose, CA, USA). Cells were resuspended in 200 µL of 1

× binding buffer at a density of 1 × 106 cells/mL. Then, 5 mL Annexin

V-FITC and 5 mL PI were added to the cell suspension and incubated

in the dark for 15 min, followed by an analysis of apoptosis using flow

cytometry (BD Bioscience, San Jose, CA, USA). All the experiments

were repeated three times with similar results.
2.9 RNA isolation and qPCR experiment

Six cases of whole blood from non-M3 AML patients and six cases

of normal human whole blood and three groups of MOLM-13 and

THP-1 cells in normal culture, Liproxstain intervention and Erastin

intervention were collected, total tissue RNA was extracted using the
TABLE 2 AML cell line types.

Cell name Disease Cytogenetics

THP-1 acute
monocytic
leukemia

human near-tetraploid karyotype-94 (88–96)<4n>XY/XXY, Y,+1,+3,+6,+6,-8,-13,-19,-22,-22, +2mar, add(1)(p11), del(1)(q42.2) i(2q), del(p21)
x2-4, i(7p), der(9)t(9;11)(p22;q23)i(9)(p10)x2,der(11)t(9;11)(p22;q23)x2, add(12)(q24)x1-2, der(13)t(8;13)(p11;p12), add(?18)(q21)- carries t
(9;11) associated with AML M5

MOLM-13 acute
myeloid
leukemia

human hyperdiploid karyotype with 4% polyploidy-51(48-52)<2n>XY, +8, +8, +8,+13,del(8)(p1?p2)?,ins(11;9)(q23;p22p23)
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FastPure Cell RNA Isolation Kit V2 (Vazyme Cat. RC112.01) kit, and

total RNA was reverse transcribed into cDNA using the HiScript III

RT SuperMix for qPCR (+gDNA wiper) instructions from Vazyme

and amplified on a PCR amplifier. The primers were designed and

synthesized by Bioengineering (Shanghai) Co., Ltd. and the sequences

are shown in Table 3. qPCR reaction total system: 0.4 ml each for

upstream and downstream primers, 10.0 ml for Mix, 2.0 ml for cDNA,
add ddH2O to 20.0 ml. reaction conditions: 95 °C 30 sec, 1 cycle; 95 °C

10sec, 60 °C 30 sec, 40 cycles; 95 The reaction conditions: 95 °C 15sec,

60 °C 60sec, 95 °C 15sec, 1 cycle. The relative expression of target

genes was calculated using the 2-△△CT method. All the

experiments were repeated six times with similar results.
2.10 Statistical analysis

In vitro experiments of our AML cell lines were performed using

one-way ANOVA statistical methods for data analysis. Two

independent samples t-test was used for PCR data of AML patients

collected from hospitals.
3 Result

3.1 Clustering of co-expression modules
Eigengenes in AML

The expression profiles of 27 samples from three risk class groups

were included in the WGCNA. We used genes with the 5000 highest

MAD values in the hospital dataset for further WGCNA. No discrete

samples were identified from sample clustering (Figure 1A). To

guarantee that the network was scale-free, we performed an

empirical analysis to select the optimal b parameter. As shown in

Figures 1B, C, the scale-free topological model fit index and the

average connectivity reached a stable state when b was equal to 14.

Figure 1D shows the clusters of module eigengenes.
3.2 Identification of key modules for AML

After determining weighting factors, a dissTOM of 5000 genes

was obtained (Figure 2A), and 17 modules were identified by mean
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linkage hierarchical clustering, each represented by a different color

(Figure 2B). To explore the correlation between module feature values

and different clinical traits, a heat map (Figure 3), of the 17 modules

and the traits (sex, age, WBC and prognostic risk classification) was

drawn. Children with AML were classified into three risk groups:

favorable, intermediate, and poor.

The risk stratification was based in part on the current Chinese

classification of cytogenetic and molecular genetic alterations in

children with AML at initial diagnosis and the response of children

to treatment, as well as on serological results (20). The risk

stratification of the National Comprehensive Cancer Network was

also used (21). Each column in Figure 3 shows the correlation

coefficient and the corresponding p-value. Red and blue represent

positive and negative correlations respectively. The darker the color,

the larger the correlation coefficient. We detected that each clinical

trait was strongly correlated with a specific module, with the AML

clinical risk class groupings most correlated with the pink and cyan

modules. The correlation coefficients were 0.4 for the pink module

(p= 0.04) and 0.56 for the cyan module(p=0.003). Therefore, these

were selected for further analysis as clinically significant modules.
3.3 Identification of genes that are possibly
significantly associated with AML in poor-
risk groups

As shown in Figures 4A, B, candidate biomarker genes were

selected based on the threshold values |MM|> 0.79 and |GS|> 0.2. |

MM|> 0.79 indicated that the gene was associated with the module,

whereas |GS|> 0.20 indicated that the gene expression profile was also

phenotypically related. Finally, the linkage of each gene was the sum

of the side attributes of the genes linked to it. The higher the degree of

connectivity, the stronger the biological function of that gene. We

obtained 53 candidate genes from the pink module and seven

candidate genes from the cyan module. PPI networks covering the

candidate genes were constructed using Cytoscape based on the PPI

interactions from STRING (Figures 4C, D).

GO analysis revealed that candidate biomarker genes were mainly

enriched biological processes annotated as cytoplasmic translation,

aerobic electron transport chain, ATP synthesis coupled electron

transport, and oxidative phosphorylation (Figure 5A) (22).

Enrichment was mainly in molecular function annotations of
TABLE 3 The primers for selected genes.

Gene Forward primer Reverse primer

RCC2 5’-CACGCAGAGCAGAAGGATGAGATG-3’ 5’-CCCACTTCACTGACAGCAAAGGAG-3’

ABHD17B 5’-CTATGTTGCCTCTTCTGCTGTCCAC-3’ 5’-ACAGATGTAAAGTCCAACGGCTTCC-3’

FTH1 5’-CTCCTACGTTTACCTGTCCATG-3’ 5’-CAAGTCATCAGGCACATACAAG -3’

IRAK1 5’-ACGCTGACCTGGAGTGGACTG-3’ 5’-GAAGCCGTTCTGAGCACAGTAGC-3’

GPX4 5’-ATGGTTAACCTGGACAAGTACC-3 5’-GACGAGCTGAGTGTAGTTTACT-3

b-Actin 5’-CCTGGCACCCAGCACAAT -3’ 5’-GGGCCGGACTCGTCATAC-3’
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structural components of ribosome and NADH dehydrogenase

(ubiquinone) activity (23). The cellular components of the genes

were significantly enriched in the annotations of cytosolic ribosome,

cytosolic large ribosomal subunit, mitochondrial respirasome,

respiratory chain complex (24). In addition, KEGG analysis showed

that the candidate genes were mainly enriched in oxidative

phosphorylation, and chemical carcinogenesis-reactive oxygen

species pathways (Figure 5C) (25, 26).
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3.4 Identification of biomarkers that predict
poor prognosis in risk groups

Results of one-way Cox analysis in the TCGA database showed that

four genes, RCC2, ABHD17B, FTH1, IRAK1, were associated with AML

prognosis (Figure 6A). Compared with the normal group, the expression

levels of RCC2, ABHD17B, FTH1 and IRAK1 were up-regulated in the

AML group (Figure 6B). In the 27 hospital samples, patients were
A B

DC

FIGURE 1

Determination of soft threshold parameters in WGCNA: (A) analysis of hospital sample outliers; (B) analysis of scale-free fit indices at different soft
threshold b parameters and determination of the average connectivity at soft threshold parameters; (C) Correlation of log (k) and log [P(k)]; (D) sample
clusters of module eigengenes..
A B

FIGURE 2

(A) Heat map of gene network visualization. The darker the shade of red, the better the overlap. (B) Dendrogram of all the differentially expressed genes
based on clustering by the degree of difference (1-TOM).
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divided—as per median expression levels of the four candidate genes—

into high and low expression groups. After survival analysis, FTH1 was

identified as a key gene for AML prognosis (Figure 6C). The specificity

and sensitivity ROC were analyzed and the area under the curve (AUC)

of the FTH1 survival curve was calculated (Figure 6D).

The AML-related data samples were further validated by querying

the public BloodSpot database (www.bloodspot.eu). From the

expression levels of FHT1 in normal and AML cells (Figure 7A), it
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was clear that levels in the poor-risk group were higher than those in

normal cells (p = 0.00013) and low-medium risk group (P =0.0028).

From the expression levels of FTH1 in normal, AML, MDS, and ALL

cells, levels in AML leukemia cells were increasingly higher than those

in normal cells (P=0.00028) (Figure 7B). The survival curves with very

differences in survival rates between the two groups were separated

into poor and favorable groups according to the median value of

FTH1 expression levels (Figure 7C).
A

B D

C

FIGURE 4

(A, B) Scatter plots of data concentration and p-value Cox regression. Each circle represents a gene. The X-axis indicates the degree of regression, the y-axis
indicates the statistical significance of a gene. Network plots of key genes in the pink module; nodes indicate genes. Figure 4 (C, D) PPI network diagram.
FIGURE 3

Heat map of correlation between different modules and clinical traits in AML.
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3.5 CCK8 assays validate MOLM-13 and
THP-1 proliferation

OD values were positively correlated with AML cell

proliferation (Figures 8A, C). The OD value of Liproxstain-1

group was higher than that of the control (without drug

intervention) at 36 hours post-inoculation, (P<0.0001).

Conversely, the OD of the Erastin group was lower than that of

the control (P<0.0001) (Figures 8B, D) confirming that ferroptosis

processes affect proliferation in leukemic cells.
3.6 Cell apoptosis

Flow cytometry results, as shown in Figure 9, showed that there was a

statisticaldifference (P<0.05)between the increasedapoptosisofMOLM-13

andTHP-1cells in theErastingroup (P<0.001) and thedecreased apoptosis

of MOLM-13 and THP-1 cells in the Liproxstain-1 group (P<0.001)
Frontiers in Oncology 08
compared to the negative control group, suggesting that the ferroptosis

process of leukemic cells can influence the occurrence of apoptosis.
3.7 QRT-PCR validation of FTH1 and
GPX4 expression

To investigate the expression of FTH1 and GPX4 after ferroptosis

inhibitor and ferroptosis agonist intervention onMOLM-13 and THP-

1 cells, we performed a qRT-PCR analysis. FTH1 andGPX4 expression

was statistically significantly upregulated and downregulated in the

Liproxstain-1 and Erastin groups respectively (Figures 10A, B).
4 Discussion

AML is a malignant disease of hematopoietic stem cells

characterized by clonal expansion of abnormally differentiated

primitive cells in the bone marrow spectrum, and both AML
A B

DC

FIGURE 5

GO and KEGG pathway enrichment analysis; (A) BP, Biological Process; CC, Cellular Component; MF, Molecular Function. (B) Network diagram of GO
analysis; (C) KEGG pathway analysis. (D) Network diagram of KEGG pathway analysis.
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A B

DC

FIGURE 6

(A) RCC2: (P=0.021), Hazard Ratio (HR)=1.542; ABHD17B: (P= 0.010), R= 1.406. FTH1: (P=0.043), HR=0.786; IRAK1: (P=0.020), HR=1.504. (B) QRTPCR
validation of RCC2, ABHD17B, FTH1 and IRAK1 expression, Normal versus AML (P=0.020, P < 0.0001, P=0.013, P=0.031). (C) Survival analysis of FTH1 in
hospital samples (purple represents that the gene is up in the sample and green represents that the gene is lowly expressed in the sample). (D) FTH1: 1-
year AUC area of 0.953 and 2-year AUC area under the curve of 1.
A B

C

FIGURE 7

(A, B) Expression of FHT1 in the normal group, risk class group, and statistical differences between the three groups. Normal: including Hematopoietic
stem cell, Multipotential progenitors, Common myeloid progenitor cell, Granulocyte monocyte progenitors, Megakaryocyte-erythroid progenitor cell,
Early Promyelocyte, Late Promyelocyte, Band cell, Metamyelocytes, Myelocyte, Monocytes, Polymorphonuclear cells; Favor-Inter:including AML with
Normal karyotype, AML with inv (16), AML with t (15,17), AML with t (8,21), AML with Trisomy 8,AML with +7, AML with trisomy 11, AML with trisomy 13,
AML with +7, AML with t (9,11);Poor: including AML with Complex karyotype, AML with t(11q23)/MLL, AML with del(5q), AML with del(7q)/7q-, AML with
Complex del(5q),AML with Complex untypical karyotype, AML with inv (3),AML with t(6;9), AML with t(8;16), AML with t(1;3),AML with -5/7(q), AML with t
(9;22);MDS: myelodysplastic syndrome, ALL: acute lymphoblastic leukemia. Figure 7C: The median value of FHT1 expression was taken for the grouping
to compare the survival difference between the two groups, the group with greater than the median value of FHT1 had a significantly lower survival rate
than the group with less than the median value of FHT1, the p-value was 0.00393.
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A B

DC

FIGURE 8

(A, C) The OD value of MOLM-13 and THP-1. (B, D) Comparison of OD values of Liproxstain-1 group, Erastin group, and control group at 36 hours.
A B

DC

FIGURE 9

(A, B) MOLM-13. (C, D) THP-1. NC: Negative control group flow cytometry, apoptosis accounted for 13.36 and 13.66, respectively. flow cytometry of
liproxstain-1 group showed that the proportion of apoptosis was 8.67 and 7.93, respectively. Erastin group flow cytometry, apoptosis accounted for
20.41 and 18.75, respectively. (B) Histogram of apoptosis rate of MOLM-13 detected by flow cytometry. (D) Histogram of apoptosis rate of THP-1
detected by flow cytometry.
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patient-related and disease-related factors affect the likelihood of

achieving therapeutic response and long-term survival in individual

patients (27).

Using WGCNA we identified 60 genes, not only involved in

constituting the oxidoreductase complex but also enriched in the

oxidative phosphorylation, chemoattractive- reactive oxygen

pathways. AML cells have an atypical metabolic phenotype

characterized by increased mitochondrial mass and greater

dependence on oxidative phosphorylation and fatty acid oxidation.

Alterations in these genes lead to abnormalities in oxidative

phosphorylation of the organism, and the extent of lipid

peroxidation product accumulation that is regulated by lipid

peroxide production and clearance possibly deters the onset of

ferroptosis (28). Indeed, Zhang and colleagues suggested that

PKCbII-mediated phosphorylation of ACSL4 activated ACSL4,

which then promoted the production of PUFA-containing

phospholipids, leading to ferroptosis (29). We hypothesize that

these candidate genes may be involved in the onset and progression

of AML disease through phosphorylation signaling pathways, with

associated prognostic implications.

One-way Cox analysis was performed on the 60 candidate genes

using the TCGA dataset, and the FTH1 gene was identified by survival

analysis as a key gene. Based on median expression levels of FTH1,

patients were divided into high and low FTH1 expression groups.

Patients with high FTH1 expression had higher overall mortalities

compared to those with low FTH1 expressions. Thus, FTH1 gene set

enrichment analysis was performed using GO terms for biological

processes, molecular functions, and cellular components. For biological

processes, enriched annotations were anion transmembrane transport

(30) and cell differentiation in the spinal cord (31) (Figure 11A). For

cellular components, enriched annotations were associated with

intermediate filament cytoskeleton (Figure 11B). For molecular

functions, enriched annotations were associated with anion

transmembrane transport cation channel and endopeptidase activities

(Figure 11C). KEGG enrichment analysis indicated that FTH1

overexpression may be mediated through the cytosolic DNA sensing

(32) and drug metabolism cytochrome P450 (33) pathways.
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FTH1 encodes the heavy subunit of ferritin, whose obvious iron

oxidase activity, due to glutamate residues, is helpful for the rapid

uptake of iron as a metal ligand (34, 35). FTH1 is closely associated

with malignant tumors such as breast and liver cancers (36, 37) as well

as hematological malignancies (38). FTH1 plays an anti-cancer role by

promoting angiogenesis (39, 40). Increased expression of FTH1

inhibits cancer by promoting apoptosis (41).

Our analysis of the data obtained from the BloodSpot database

showed that mRNA expression level of FTH1 was highest in the high-

risk group. Moreover, expression levels differed among blood diseases

with AML having higher FTH1 expression levels than both ALL and

normal human cells (42). The high expression of FTH1 was positively

correlated with mortality rates in AML patients. These results

demonstrated the prognostic potential of the expression level of

FTH1. Indeed, the survival rate of patients in the high-risk group

was verified to be lower than that of patients in the low- (P=0.011)

and intermediate-risk groups (P=0.0021) as per survival analysis of

the hospital and TCGA data sets (Figures 12, 13) confirming the effect

FTH1 expression level has on the prognostic risk class grouping.

Thus, we hypothesize that high FTH1 expression level is a risk factor

for AML in children. This possibly provides new strategies for AML

treatment in children.

The ferroptosis is impaired by lipid oxide metabolism in cells, and

GPX4 can degrade small molecules of hydrogen peroxide and some

lipid oxides (12). In the presence of active iron, it catalyzes the

production of specific phospholipid hydroperoxides, and this

chemical process can be counteracted by endogenous GPX4, thus

acting as an inhibitor of ferroptosis (43, 44). Overexpression of FTH1

suppresses the progression of ferroptosis (45). In rat leukemia cells,

overexpression of GPX4 inhibits Cytochrome c release, caspase

activation, NFB activation, and DNA cleavage (46). In this study,

overexpression of FTH1 inhibited ferroptosis and thus contributed to

the proliferation of leukemic cells, enhancing the sensitivity of AML

cells to chemotherapeutic agents by the ferroptosis inducer erastin.

Iron overload in AML patients may lead to a variety of cellular and

systemic changes and therefore plays a critical role in these

hematologic malignancies. In our cell proliferation assay, MOLM-
A B

FIGURE 10

(A) QRT-PCR validation of FTH1 and GPX4 expression. Normal versus Liproxstain-1, (P<0.001); Normal versus Erastin, (P=0.006, P=0.004); Liproxstain-1
versus Erastin, (P<0.001). (B) QRT-PCR validation of FTH1 and GPX4 expression. Normal versus Liproxstain-1, (P=0.013, P=0.001); Normal versus Erastin,
(P=0.039, P=0.007); Liproxstain-1 versus Erastin, (P=0.009, P<0.001).
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13 and THP-1 cells treated with Liproxstain-1 proliferated much

more than the controls. Conversely, cells treated with erastin, a

ferroptosis inducer that inhibits the cysteine glutamate reverse

transport system, decrease cysteine input and subsequent

glutathione synthesis, and have restricted cell proliferation. In AML

cell lines, in a dose-dependent manner, erastin affects mixed cell death

including ferroptosis, and enhances the anti-leukemic effects of

cytarabine and doxorubicin (47).

Thus, our findings suggest that the ferroptosis process affects the

proliferative status of leukemic cells, consistent with the finding that
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early cell death in AML is associated with ferroptosis induction (48).

We further analyzed the expression level of FHT1 in MOLM-13 and

THP-1 cells by qPCR and found that FTH1 was significantly

upregulated when MOLM-13 and THP-1 cells were actively

proliferating, and downregulated when MOLM-13 and THP-1 cell

proliferation was impaired. Furthermore, leukemic cells in the AML

high-risk group had high expression levels of FTH1 and actively

proliferated. Therefore, we inferred that overexpression of FTH1 may

be one of the risk factors for AML in children. By inhibiting the FTH1

expression, the proliferation of AML leukemia cells could be
FIGURE 12

Survival curves of 27 pediatric AML patients.
A B

DC

FIGURE 11

(A) biological process; (B) cellular component; (C) biological process; (D) KEGG.
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negatively affected, resulting in a better prognosis of childhood non-

M3 AML. But our inference needs more experiments to prove.
5 Conclusion

We identified FTH1 as a key gene that affects the risk of a poor

prognosis, thus establishing a possible tool for improving the

prognosis of AML patients in the clinical setting.
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