171 research outputs found

    UNDERSTANDING ENVIRONMENTAL FACTORS DRIVING WILDLAND FIRE IGNITIONS IN ALASKAN TUNDRA

    Get PDF
    Wildland fire is a dominant disturbance agent that drives ecosystem change, climate forcing, and carbon cycle in the boreal forest and tundra ecosystems of the High Northern Latitudes (HNL). Tundra fires can exert a considerable influence on the local ecosystem functioning and contribute to climate change through biogeochemical and biogeophysical effects. However, the drivers and mechanisms of tundra fires are still poorly understood. Research on modeling contemporary fire occurrence in the tundra is also lacking. This dissertation addresses the overarching scientific question of “What environmental factors and mechanisms drive wildfire ignition in Alaskan tundra?” Environmental factors from multiple aspects are considered including fuel type and state, fire weather, topography, and ignition source. First, to understand the spatial distribution of fuel types in the tundra, multi- year satellite observations and field data were used to develop the first fractional coverage product of major fuel type components across the entire Alaskan tundra at 30 m resolution. Second, to account for the primary ignition source of fires in the HNL, an empirical-dynamical modeling framework was developed to predict the probability of cloud-to-ground (CG) lightning across Alaskan tundra, through the integration of Weather Research and Forecast (WRF) model and machine learning algorithm. Finally, environmental factors including fuel type distribution, fuel moisture state, WRF simulated ignition source and fire weather, and topographical features, were combined with empirical modeling methods to understand their roles in driving wildland fire ignitions across Alaskan tundra from 2001 to 2019. This work demonstrates the strong capability for accurate prediction of CG lightning and wildland fire probabilities, by incorporating dynamic weather models, empirical methods, and satellite observations in data-scarce regions like the HNL. The developed models present a novel component of fire danger modeling that can considerably strengthen the current capability to forecast fire occurrence and support operational fire management agencies in the HNL. In addition, the insights gained from this research will allow for more accurate representation of wildfire ignition probabilities in studies focused on assessing the impact of the projected climate change in HNL tundra which has largely absent in previous modeling efforts

    Impacts of wildfire and landscape factors on organic soil properties in Arctic tussock tundra

    Get PDF
    Tundra ecosystems contain some of the largest stores of soil organic carbon among all biomes worldwide. Wildfire, the primary disturbance agent in Arctic tundra, is likely to impact soil properties in ways that enable carbon release and modify ecosystem functioning more broadly through impacts on organic soils, based on evidence from a recent extreme Anaktuvuk River Fire (ARF). However, comparatively little is known about the long-term impacts of typical tundra fires that are short-lived and transient. Here we quantitatively investigated how these transient tundra fires and other landscape factors affected organic soil properties, including soil organic layer (SOL) thickness, soil temperature, and soil moisture, in the tussock tundra. We examined extensive field observations collected from nearly 200 plots across a wide range of fire-impacted tundra regions in AK within the scope of NASA\u27s Arctic Boreal Vulnerability Experiment. We found an overall shallower SOL in our field regions (∼15 cm on average) compared to areas with no known fire record or the ARF (∼20 cm or thicker), suggesting that estimations based on evidence from the extreme ARF event could result in gross overestimation of soil organic carbon (SOC) stock and fire impacts across the tundra. Typical tundra fires could be too short-lived to result in substantial SOL consumption and yield less robust results of SOL and carbon storage. Yet, repeated fires may amount to a larger amount of SOC loss than one single severe burning. As expected, our study showed that wildfire could affect soil moisture and temperature in the tussock tundra over decades after the fire, with drier and warmer soils found to be associated with more frequent and severe burnings. Soil temperature was also associated with vegetation cover and air temperature

    Targeting Microglia and Macrophages: A Potential Treatment Strategy for Multiple Sclerosis

    Get PDF
    Multiple sclerosis (MS) is a chronic inflammatory neurodegenerative disease of the central nervous system (CNS). The early stage is characterized by relapses and the later stage, by progressive disability. Results from experimental and clinical investigations have demonstrated that microglia and macrophages play a key part in the disease course. These cells actively initiate immune infiltration and the demyelination cascade during the early phase of the disease; however, they promote remyelination and alleviate disease in later stages. This review aims to provide a comprehensive overview of the existing knowledge regarding the neuromodulatory function of macrophages and microglia in the healthy and injured CNS, and it discusses the feasibility of harnessing microglia and macrophage physiology to treat MS. The review encourages further investigations into macrophage-targeted therapy, as well as macrophage-based drug delivery, for realizing efficient treatment strategies for MS

    An observational study on the effect of seasonal variation on peritoneal dialysis patients

    Get PDF
    Background: Seasonal variation has an impact on plants, wild animals, and also human beings. Data have shown seasonal variation has a significant impact on patients’ fluid status, biochemistry results, and outcomes in hemodialysis populations. The relevant data on peritoneal dialysis is scant.Methods: This was a cross sectional study. All patients followed up in our center had a peritoneal equilibration test and PD adequacy test every 6 months. All the peritoneal equilibration test and PD adequacy test data were collected during December 2019 to November 2020. The monthly delivery information of the whole center was collected from 2015 to 2019.Results: There were 366 patients and 604 sets of peritoneal equilibration test and PD adequacy test results in the study. Plasma albumin and phosphate levels were higher in summer. The monthly average outdoor temperature was positively correlated with plasma albumin. There was no seasonal difference in peritoneal dialysis ultrafiltration or urine volume. The percentage of low glucose concentration (1.5%) usage was higher in summer and lower in winter.Conclusion: Plasma albumin and phosphate levels were higher in summer in PD patients. Weaker glucose peritoneal dialysis dialysate was more widely used in summer. Understanding the seasonal variation of peritoneal dialysis is helpful in individualized treatment

    Adipokines in atherosclerosis: unraveling complex roles

    Get PDF
    Adipokines are biologically active factors secreted by adipose tissue that act on local and distant tissues through autocrine, paracrine, and endocrine mechanisms. However, adipokines are believed to be involved in an increased risk of atherosclerosis. Classical adipokines include leptin, adiponectin, and ceramide, while newly identified adipokines include visceral adipose tissue-derived serpin, omentin, and asprosin. New evidence suggests that adipokines can play an essential role in atherosclerosis progression and regression. Here, we summarize the complex roles of various adipokines in atherosclerosis lesions. Representative protective adipokines include adiponectin and neuregulin 4; deteriorating adipokines include leptin, resistin, thrombospondin-1, and C1q/tumor necrosis factor-related protein 5; and adipokines with dual protective and deteriorating effects include C1q/tumor necrosis factor-related protein 1 and C1q/tumor necrosis factor-related protein 3; and adipose tissue-derived bioactive materials include sphingosine-1-phosphate, ceramide, and adipose tissue-derived exosomes. However, the role of a newly discovered adipokine, asprosin, in atherosclerosis remains unclear. This article reviews progress in the research on the effects of adipokines in atherosclerosis and how they may be regulated to halt its progression

    Genome wide association study on feed conversion ratio using imputed sequence data in chickens

    Get PDF
    Objective Feed consumption contributes a large percentage for total production costs in the poultry industry. Detecting genes associated with feeding traits will be of benefit to improve our understanding of the molecular determinants for feed efficiency. The objective of this study was to identify candidate genes associated with feed conversion ratio (FCR) via genome-wide association study (GWAS) using sequence data imputed from single nucleotide polymorphism (SNP) panel in a Chinese indigenous chicken population. Methods A total of 435 Chinese indigenous chickens were phenotyped for FCR and were genotyped using a 600K SNP genotyping array. Twenty-four birds were selected for sequencing, and the 600K SNP panel data were imputed to whole sequence data with the 24 birds as the reference. The GWAS were performed with GEMMA software. Results After quality control, 8,626,020 SNPs were used for sequence based GWAS, in which ten significant genomic regions were detected to be associated with FCR. Ten candidate genes, ubiquitin specific peptidase 44, leukotriene A4 hydrolase, ETS transcription factor, R-spondin 2, inhibitor of apoptosis protein 3, sosondowah ankyrin repeat domain family member D, calmodulin regulated spectrin associated protein family member 2, zinc finger and BTB domain containing 41, potassium sodium-activated channel subfamily T member 2, and member of RAS oncogene family were annotated. Several of them were within or near the reported FCR quantitative trait loci, and others were newly reported. Conclusion Results from this study provide valuable prior information on chicken genomic breeding programs, and potentially improve our understanding of the molecular mechanism for feeding traits
    corecore