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Objective: Feed consumption contributes a large percentage for total production costs in the 
poultry industry. Detecting genes associated with feeding traits will be of benefit to improve 
our understanding of the molecular determinants for feed efficiency. The objective of this 
study was to identify candidate genes associated with feed conversion ratio (FCR) via genome-
wide association study (GWAS) using sequence data imputed from single nucleotide poly
morphism (SNP) panel in a Chinese indigenous chicken population. 
Methods: A total of 435 Chinese indigenous chickens were phenotyped for FCR and were 
genotyped using a 600K SNP genotyping array. Twenty-four birds were selected for sequencing, 
and the 600K SNP panel data were imputed to whole sequence data with the 24 birds as the 
reference. The GWAS were performed with GEMMA software.
Results: After quality control, 8,626,020 SNPs were used for sequence based GWAS, in which 
ten significant genomic regions were detected to be associated with FCR. Ten candidate genes, 
ubiquitin specific peptidase 44, leukotriene A4 hydrolase, ETS transcription factor, R-spondin 
2, inhibitor of apoptosis protein 3, sosondowah ankyrin repeat domain family member D, 
calmodulin regulated spectrin associated protein family member 2, zinc finger and BTB domain 
containing 41, potassium sodium-activated channel subfamily T member 2, and member of 
RAS oncogene family were annotated. Several of them were within or near the reported FCR 
quantitative trait loci, and others were newly reported. 
Conclusion: Results from this study provide valuable prior information on chicken genomic 
breeding programs, and potentially improve our understanding of the molecular mechanism 
for feeding traits. 
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Feed Conversion Ratio; Chicken

INTRODUCTION

Increasing the productivity of livestock species and minimizing their environmental impact 
are the major goals in the livestock husbandry [1]. Improving feed efficiency would assist in 
meeting these challenges because feed consumption is about 70% of the total costs in livestock 
production [2]. Previous studies demonstrated that genetic selection could account for 85% 
to 90% of phenotypic improvement and plays a predominant role in underlying genetic archi-
tecture of increasing feed efficiency, while nutrition and management only explained 10% 
to 15% of phenotypic improvement [3]. Feed conversion ratio (FCR) is the most widely used 
measurement of feed efficiency by indicating how much feed mass livestock converts into 
the desired output. Up to now, a total of 32 quantitative trait loci (QTLs) associated with 
FCR have been reported. However, most QTLs are mapped with microsatellites markers by 
using linkage analysis [4] and genome scans [5] resulting in low resolution. 
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  Compared with previous studies, genome-wide association 
studies (GWAS) can accurately identify genes involved in eco-
nomically important traits of cattle [6], pigs [7], and chickens 
[8]. With the reduction of sequencing costs and rapid develop-
ment of imputation technology, GWAS is the preferred option 
for such analyses. Using imputed whole genome sequence 
data, GWAS could take full advantage of all markers and de-
tect variants associated with interesting traits, without being 
affected or influenced by the linkage disequilibrium between 
single nucleotide polymorphisms (SNPs) and the underlying 
genes [9]. These observations suggest that whole genome se-
quence data is an effective pipeline to enhance the power of 
GWAS.
  The objective of this study was to identify candidate genes 
associated with FCR via GWAS in a Chinese indigenous chicken 
population using sequence data imputed from a SNP panel. 

MATERIALS AND METHODS 

Animals 
The study population was obtained from a Chinese indigenous 
chicken breed that has been maintained for 25 generations 
by the Wens Nanfang Poultry Breeding Co. Ltd (Yun Fu, 
Guangdong, China). We obtained 435 male birds from the 
25th generation, which were generated by 30 males and 360 
females from the 24th generation and were reared with the 
same recommended nutritional and environmental conditions. 
The FCR was calculated according to recorded data during the 
feeding trial. For more details about this population, please 
refer to Zhang et al [10].

Chip data and imputed sequences data
All of 435 male chickens from the 25th generation and 15 sires 
of the 24th generation were selected for genotyping. The ge-
nomic DNA from the 450 birds was extracted from blood 
samples using the NRBC Blood DNA Kit (Omega Bio-Tek, 
Norcross, GA, USA) according to the manufacturer’s instruc-
tions, and DNA samples were analyzed for genome DNA 
concentration and integrity. DNA samples of the appropriate 
quality were genotyped using 600K Affymetrix Axiom HD 
chicken genotyping array, which contains 580,961 SNPs dis-
tributed on 28 autosomes, two linkage groups (LGE64 and 
LGE22C19W28_E50C23), and two sex chromosomes. Then, 
twenty-four key individuals were selected for sequencing from 
the 435 birds and their 15 sires based on a strategy of maxi-
mizing the expected genetic relationship, while maximizing 
the proportion of unique genomes sequenced in the popula-
tion. In this process, we used G matrix to calculate the genetic 
relationship between key individuals and the remaining popu-
lation, details of the selection of key individuals in our study 
were described by Ye et al [11,12]. Finally, 21 males and 3 sires 
were selected as key individuals and re-sequenced with 150-bp 

paired-end reads on the Illumina HiSeq 3000 platform with 
the average sequence depth of 14.62. Sequencing reads were 
aligned to the Gallus gallus 4.0 genome using the Burrows-
Wheeler Alignment tool [13]. Duplicated reads were removed 
using Picard release 1.119 (http://sourceforge.net/projects/
picard/files/picard20tools/1.119/). GATK software [14] was 
used for SNP calling with the default parameters. Finally, 
11,645,758 SNPs remained for further analysis and the con-
cordance between chip data and sequence data was 98.0%. 
After that, the SNP chip was imputed to sequence data using 
Fimpute software [15] with key sequenced individuals as the 
reference. For more details about the genotype imputation, 
please refer to Ye et al [12]. Quality control both for the chip 
and imputed sequences genotypes were conducted use PLINK 
1.90 software [16] with the same criteria: SNP call rates >0.97, 
minor allele frequencies >0.05, obeys Hardy-Weinberg equi-
librium (p>0.00001), and individual call rate >0.95. After 
quality control, 447,766 SNPs from SNP chip and 8,626,020 
SNPs from imputed sequences remained for subsequent anal-
ysis. These SNPs distributed on autosome with the average 
distance between adjacent SNPs ranged from 92.63 to 168.27 
bp among different autosomes.

Statistical analysis
Mixed linear model was used for the GWAS, and the analysis 
was performed with GEMMA software (Zhou and Stephens 
[17]). The statistical model is described as follows:

  Y = Xb+Sa+Zu+e

where Y is the vector of phenotypic values for all individuals, 
b is a vector of fixed effects including the batch effect, which 
has three levels, a is the substitution effect of the SNP under 
consideration, u is the random additive genetic effect; X and 
Z are the design matrices for b and u, respectively; S is the de-
sign vector for a; e is the vector of random residuals. In this 
model, u and e were assumed to have the structure 
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extracted, with a maximum distance of 5 Mb between the QTL and the SNP to be compared. 141 

 is the residual variance. To compare the 
GWAS using the sequence data with chip data, the GWAS was 
performed using the chip data with the same model. DMU 
software [18] was used to estimate the heritability explained by 
the sequence data with the same model as the one described 
above.
  To visualize the result from the GWAS, Manhattan plots 
and quantile-quantile plots were drawn by the qqman package 
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[19] in R for each trait. In this study, the significant level was 
adjusted based on the effective number of independent tests, 
which was calculated by the simpleM software [20].
  Candidate genes which were located within or nearby the 
significant SNPs (within 0.3 Mb) were identified by Ensembl 
(http://www.ensembl.org/index.html) and NCBI (https://www.
ncbi.nlm.nih.gov/) annotation of the Gallus gallus 4.0 genome 
version.

Comparing significant regions with reported 
quantitative trait loci 
SNPs with p-value <1.0×10–5 were compared with all reported 
QTLs that associated with FCR. The QTLs were obtained from 
the Chicken QTLdb (https://www.animalgenome.org/cgi-bin/
QTLdb/GG/index). Based on the physical location, QTLs close 
to the significant SNPs were extracted, with a maximum dis-
tance of 5 Mb between the QTL and the SNP to be compared.

RESULTS 

Phenotype statistics and analysis of genetic parameter
Descriptive statistics for trait FCR are presented in Table 1. 
We found that the phenotypes of FCR were normally distrib-
uted (Shapiro-Wilk test, p>0.05), and its heritability was 0.33.

Association results
The effective number of independent tests was 631,181 as cal-
culated by the simple method. Hence, the threshold p-value 
was adjusted to 7.92×10–8 (0.05/631,181) for a genome-wide 
significance level, and to 1.58×10–6 (1.00/631,181) for a genome-
wide suggestive significance level. 
  In the case of using imputed whole sequence, one genome-
wide significant SNP on chromosome 8 locating at 5th intron 

of zinc finger and BTB domain containing 41 (ZBTB41) was 
found to be associated with FCR, and 9 SNPs reached the sug-
gestive significance level (Table 2). Among these 9 SNPs, 3 
of them were located between 45.43 Mb and 45.61 Mb of 
chromosome 1 with the nearest genes being ubiquitin specific 
peptidase 44 (USP44), leukotriene A4 hydrolase (LTA4H), and 
ETS transcription factor (ELK3), respectively. One SNP was 
located on chromosome 2 and 60 Kb distance away from its 
nearest R-spondin 2 (RSPO2) gene. Two SNPs were located 
on a narrow region of chromosome 4 (from 15.59 Mb to 16.04 
Mb), and the nearest genes were inhibitor of apoptosis pro-
tein 3 (IAP3) and sosondowah ankyrin repeat domain family 
member D (SOWAHD). Another two SNPs were located on 
the positions of 1.39 Mb and 2.71 Mb of chromosome 8 re-
spectively, with the first SNP locating on the 14th intron of 
calmodulin regulated spectrin associated protein family mem-
ber 2 (CAMSAP2) and the other locating on the 4th intron 
of potassium sodium-activated channel subfamily T member 
2 (KCNT2). The remaining 1 SNP was located on the position 
of 3.20 Mb of chromosome 26 and member of RAS oncogene 
family (RAP1A) was its nearest gene. In the case of using chip 
data, only one SNP reach a suggestive significance level, and 
the SNP was also detected by using imputed whole sequence 
(Figure 1).

Table 1. Descriptive statistics for phenotypes

Trait N Mean (SD) Min Max CV (%) h2(se)1)

FCR (%) 435 3.94 ± 0.49 2.9 6.92 12.44 0.33 (0.11)

SD, standard deviation; CV, coefficient of variation; se, standard errors; FCR, feed 
conversion ratio; SNP, single nucleotide polymorphism.
1) Heritability and standard error estimated by DMU software package based on 
SNP genotypes.

Table 2. SNPs suggestive significantly associated with feed conversion ratio

Chr1) Position MAF Beta2) Se3) –log10(P) Near-gene Distance (Kb)4)

1 45439962 0.053 0.36 0.07 5.92 USP44 U2.39
1 45582623 0.051 0.36 0.07 5.81 LTA4H U1.72
1 45616618 0.053 0.38 0.07 6.40 ELK3 U5.16
2 131217033 0.051 0.36 0.07 6.34 RSPO2 U60.14
4 15596919 0.161 0.23 0.05 5.97 IAP3 U15.85
4 16040593 0.100 0.29 0.05 6.87 SOWAHD U23.81
8 1395613 0.401 0.17 0.03 6.16 CAMSAP2 intro14
8 2583927 0.182 0.24 0.04 7.14 ZBTB41 intro5
8 2717880 0.181 0.22 0.04 5.97 KCNT2 intro4
26 3202060 0.374 0.18 0.04 5.98 RAP1A U3.72

SNP, single nucleotide polymorphism; MAF, minor allele frequency; USP44, ubiquitin specific peptidase 44; LTA4H, leukotriene A4 hydrolase; ELK3, ETS transcription factor; 
RSPO2, R-spondin 2; IAP3, inhibitor of apoptosis protein 3; SOWAHD, sosondowah ankyrin repeat domain family member D; CAMSAP2, calmodulin regulated spectrin asso-
ciated protein family member 2; ZBTB41, zinc finger and BTB domain containing 41; KCNT2, potassium sodium-activated channel subfamily T member 2; RAP1A, member of 
RAS oncogene family. 
1) Chicken chromosome.
2) The effect size for marker.
3) The standard errors for effect.
4) D and U indicate the SNP is upstream and downstream of a gene, respectively. 
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Comparing significant regions with reported 
quantitative trait loci
In our study, p-value of 31 SNPs was smaller than 1.0×10–5. 
They were compared with the reported QTLs collected from 
Chicken QTLdb. The results are shown in Supplementary Table 
S1. A total of 32 QTLs on autosomes were reported to be as-
sociated with FCR, and 8 of those QTLs were found near the 
31 SNPs (Supplementary Table S1). Besides, seven SNPs lo-
cated on chromosome 1 and 2 located far from reported QTL. 
Three out of the 7 SNPs located on a narrow region from 102.70 
Mb to 106.46 Mb. The distribution of chicken FCR related 
QTLs as compared with SNPs with p-value lower than 1×10–5 
are graphically displayed in Figure 2. 

DISCUSSION 

Feeding traits are economically important in chicken industry, 
as they largely determine the edible percentage of the chicken 
and display moderate to high heritability. In this study, with 
the scientific feeding management and systematic record of 
phenotypes, a total of 435 birds’ average daily feed intake and 
average daily gain were used to calculate the FCR. Through 
the statistical test, the FCR presented the normal distribution 
(Shapiro-Wilk test, p>0.05). The hereditability estimates for 

FCR were higher than the estimate of Aggrey et al [21]. Based 
on the genetic parameter estimates, exploring the genetic me
chanisms and identifying major genes would be useful for 
improving feed efficiency. In our study, we performed GWAS 
for FCR in a Chinese indigenous chicken population using 
both imputed whole sequence data and chip data. 
  To our expectation, the imputed sequence data including 
more SNPs could capture more genetic variation and detect 
more signals than a SNP array. With the same statistical model 
and significance level for both datasets, the SNPs detected from 
imputed whole sequence data were more than that from the 
chip data. On one hand, this demonstrated the power of im-
puted whole sequence data. On another hand, the stronger 
associations with imputed genotypes were partly due to some 
imputation artefacts driven by allele frequencies in the imputed 
loci.
  In this study, the ten candidate genes detected for FCR are 
partly functionally related to feeding traits. Functional study 
showed that USP44 prevents the premature activation of the 
anaphase-promoting complex and regulating centrosome sepa-
ration, positioning, and mitotic spindle geometry. LTA4H is 
an enzyme that would generate leukotriene B4 (LTB4) [22]. 
LTB4 is an extremely pro-inflammatory lipid mediator that 
can exert its activity by binding to receptors BLT1 or BLT2 [23]. 

Figure 1. Manhattan plot (left) and quantile-quantile plot (right) of the observed p-values for feed conversion ratio (FCR) using chip data (top) and imputed whole 
sequence data (bottom). In the Manhattan plots, the position of each single nucleotide polymorphism on the chromosome was plotted against its –log10- transformed 
p-value. The dotted red line and solid red line in the Manhattan plots represent the significant threshold of 1.58×10–6 and 7.92×10–8 respectively. For quantile-quantile 
plot, the x-axis represents the expected –log10-transformed p-values, and the y-axis represents the observed –log10-transformed p-values.
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ELK3 is a ternary complex factor and transcription repressor, 
which belongs to the ETS family involved in angiogenesis dur-
ing embryonic development [24]. In addition, individuals 
lacking ELK3 protein had smaller tumors due to their inability 
to become vascularized and oxygenated. RSPO2 is a member 
of R-spondin family of proteins. These proteins are secreted 
ligands of leucine-rich repeat containing G protein-coupled 
receptors that enhance Wnt signaling through the inhibition 
of ubiquitin E3 ligases [25]. IAP3 encodes a protein that be-
longs to a family of apoptotic suppressor proteins. This protein 
functions through binding to tumor necrosis factor receptor-
associated factors TRAF1 and TRAF2 and inhibits apoptosis 
induced by menadione, a potent inducer of free radicals, and 
interleukin 1-β converting enzyme [26]. SOWAHD is a protein 

coding gene linked to Iroquois genes, suggesting that regulatory 
constraints underlie the maintenance of the Iroquois-Sowah 
syntenic block [27]. CAMSAP2 specifically binds the minus-
end of non-centrosomal microtubules, which can regulate the 
dynamics, organization ,and polymerization of microtubules 
[28,29]. ZBTB41 is a protein gene, which may be involved in 
transcriptional regulation [30]. KCNT2 is a human gene that 
encodes the KNa protein potassium channel activated by in-
ternal raises in sodium or chloride ions [31]. RAP1A encodes 
a member of the Ras family of small GTPases. The encoded 
protein undergoes a change in conformational state and activity, 
depending on whether it is bound to guanosine triphosphate 
(GTP) or guanosine diphosphate. This protein is activated by 
several types of guanine nucleotide exchange factors, and in-

Figure 2. Genome-wide association study (GWAS) result of feed conversion ratio compared with reported quantitative trait loci (QTLs) associated with feed conversion 
ratio (FCR). The inner and outer circles were used to indicates the reported QTLs obtained from AnimalQTL database and from this study, respectively. The different shades 
of grey in the inner circle were used to distinguish the adjacent chromosomes. The red lines on the inner circle indicate the times of reported QTLs at the corresponding 
genome region. The outside circle is a Manhattan plot of the FCR with two thresholds at (1.58×10–6) and 5.0.
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activated by two groups of GTPase-activating proteins [32].
  QTLs that reported to be associated with chicken FCR are 
distributed across the whole genome. Part of them were re-
ported several times in previous studies and overlapped with 
significant SNPs detected in this study, which suggested that 
the candidate regions detected in this study were reliable. Other 
SNPs that reached the suggestive significant levels were not 
located in QTL region may be the new candidate loci or sta-
tistically false positive signals. 
  The selection of significant level was seriously considered 
in this study. Though Bonferroni correction is widely used, it 
is rigorous in the genotype data with high linkage disequili
brium. Especially for such a high density imputed sequence 
data, the false negative results are not neglectable [33]. Hence, 
the number of effectively independent tests through principal 
component analysis [20] were used in this study.

CONCLUSION

In this study, we conducted a genome wide association study 
for FCR using both imputed whole sequence data and SNP 
array in a Chinese indigenous chicken population. A list of 
significant SNPs and ten candidate genes were identified, and 
several of these regions were overlapped with QTLs reported 
in previous studies. Results from this study provided valuable 
prior information for chicken genomic breeding program and 
would potentially improve our understanding of the molecular 
mechanism for feeding traits. 
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