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Adipokines are biologically active factors secreted by adipose tissue that act on local
and distant tissues through autocrine, paracrine, and endocrine mechanisms.
However, adipokines are believed to be involved in an increased risk of
atherosclerosis. Classical adipokines include leptin, adiponectin, and ceramide,
while newly identified adipokines include visceral adipose tissue-derived serpin,
omentin, and asprosin. New evidence suggests that adipokines can play an essential
role in atherosclerosis progression and regression. Here, we summarize the
complex roles of various adipokines in atherosclerosis lesions. Representative
protective adipokines include adiponectin and neuregulin 4; deteriorating
adipokines include leptin, resistin, thrombospondin-1, and C1q/tumor necrosis
factor-related protein 5; and adipokines with dual protective and deteriorating
effects include C1q/tumor necrosis factor-related protein 1 and C1q/tumor necrosis
factor-related protein 3; and adipose tissue-derived bioactive materials include
sphingosine-1-phosphate, ceramide, and adipose tissue-derived exosomes.
However, the role of a newly discovered adipokine, asprosin, in atherosclerosis
remains unclear. This article reviews progress in the research on the effects of
adipokines in atherosclerosis and how they may be regulated to halt its progression.
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1. Introduction

Atherosclerosis (AS) is the leading cause of death from cardiovascular disease (CVD) in

Western countries (1). It is characterized by vascular lesion formation, involving dysfunction

of vessel wall cells and lipid deposition due to dyslipidemia (2, 3). Obesity, diabetes, and

hypertension, which are major cardiovascular risk factors, induce endothelial injury

leading to various proatherogenic effects (4). These effects include increased platelet

adhesion and aggregation, monocyte adhesion/infiltration, accumulation of oxidatively

modified lipoproteins, and vasoconstriction (5). In humans, the initial stage of de novo

atherosclerotic plaque formation is known as adaptive intimal thickening. It is primarily

characterized by the migration and proliferation of vascular smooth muscle cells (VSMCs)

(5), during which VSMC transitions from a contracted to a proliferative state. At the late

atheroma, VSMCs could migrate to the surface, forming a “fibrous cap” that protects the

lesion from rupture (6). Early pathological development is facilitated by VSMC

proliferation and migration, while VSMC apoptosis, cellular senescence, and the presence

of macrophage-like cells derived from VSMCs may contribute to inflammation (7). The

hallmark of AS lesions is the formation of foam cells. Differentiated macrophages express

scavenger receptors that recognize and take up oxidized low-density lipoprotein (ox-LDL)

(8). Macrophages that accumulate excessive lipids from ox-LDL, transforming into foam

cells. In addition to the well-established involvement of lipid accumulation in AS
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pathogenesis, emerging evidence suggests that adipose tissue, once

perceived as a passive energy storage depot, plays an active role in

AS by secreting bioactive proteins or products called adipokines (9)

(Table 1).

As one of the largest organs in the body, white adipose tissue

(WAT) is mainly composed of adipocytes, blood vessels,

lymphocytes, and stem cells, and occupies a central position in

energy regulation and metabolism. In the human body, WAT is

mainly distributed in subcutaneous, visceral, and gonadal areas.

The percentage of WAT in body weight and cell size varies

greatly among individuals of different body sizes, from

approximately 9%–28% in lean adults to 40%–70% in obese

people (16). This disparity primarily arises from the expansion of

subcutaneous and visceral WAT depots (17). Notably, there

exists considerable heterogeneity in fat cell size, both within an

individual and across different individuals. Generally, during

periods of weight gain, fat cell size tends to increase, whereas

weight loss is associated with a reduction in fat cell size (18).

White adipocytes contain large single-compartment lipid droplets

with fewer mitochondria, which store excess energy in the body

and respond to the body’s energy and nutrient needs at all times.

Macrophages are the most abundant immune cells in the adipose

tissue of obese individuals, and their recruitment and

proliferation during high-caloric feeding are usually associated

with adipose tissue inflammation and insulin resistance (19, 20).

Adipose tissue macrophages in lean organisms tend to be

inflammation-ameliorating phenotype, whereas the phenotype of

adipose tissue macrophages in obese individuals is more pro-

inflammatory (21). The activation of CD8+ effector T cells and

the recruitment of monocytes and macrophages in obese adipose

tissue contribute to the accumulation of adipose tissue

macrophages and the promotion of inflammation within the

adipose tissue (22). WAT has an endocrine function and secretes

characteristic adipokines such as leptin, adiponectin, omentin,

and visceral adipose tissue-derived serpin (vaspin). In the obesity

model, adipocyte hypertrophy occurred before hyperplasia, with

increased secretion of leptin, ceramide, and vaspin and decreased

secretion of adiponectin and omentin in hypertrophied

adipocytes. One distinguishing feature of hypertrophic WAT is
TABLE 1 Vascular components’ role in the development of AS.

Vascular
components

Role in development of AS

ECs Persistent shear stress and AS risk factors induce endothelia
ECs express leukocyte adhesion molecules ↑mononuclear ph

VSMCs VSMC senescence is a characteristic of promoting plaque pr
“Abnormal” proliferation of VSMCs promotes plaque forma
Apoptosis of VSMCs may be the central event of plaque rup

Macrophages In an atherogenic environment, endothelial adhesion of mon
to differentiate into macrophages.
Lipoprotein uptake by macrophages through macropinocytos
and SR-BI) combined with impaired ABCA1 and ABCG1 ef
promote AS lesion progression and necrotic nuclear expansi

PVAT PVAT, under pathological conditions, becomes dysfunctiona
dysfunction and inflammatory cell infiltration, and promotes

↑ means increase; AS, atherosclerosis; ABCA1, ATP-binding cassette transporter A

endothelial-to-mesenchymal transition; PVAT, perivascular adipose tissue; SR-A, type

smooth muscle cells.
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the presence of enlarged adipocytes, which occurs due to lipid

accumulation within the cells. In contrast, hyperplastic WAT is

characterized by a higher abundance of smaller adipocytes

compared to normal or hypertrophic WAT (18). Inducing a

brown adipose tissue (BAT) phenotype in WAT is called

“browning,” that is, beige adipose tissue (BeAT).

BAT is named for its brown appearance. Color reflects the

number of iron-containing mitochondria in adipocytes. The

darker the color, the more mitochondria there are (23). In the

human body, BAT is mainly found in the interscapular region,

back of the neck, and mediastinum. BAT is most abundant in

newborns, whereas adults have less than 2% of their body

weight in BAT. BAT function decreases with age. Nevertheless,

BAT can be restored to its young state when necessary in

response to the body’s needs (24). Unlike white adipocytes,

which are microscopically visible as tiny multi-compartmented

lipid droplets, brown adipocytes partly originate from myogenic

factor 5 positive progenitor cells and contain more

mitochondria than white adipocytes (25). The abundance of

mitochondria allows brown adipocytes to achieve adaptive

thermogenesis via fatty acid uncoupling and oxidative

phosphorylation (26). In addition to this mechanism, alternative

pathways for thermogenesis include the succinate cycle, creatine

cycle, calcium cycle, fatty acid cycle, and ATP/ADP carrier-

mediated thermogenesis (27, 28). Apart from its thermogenic

function, BAT and BeAT play a role in metabolic regulation

through the secretion of adipokines. Notable adipokines

secreted by BAT include neuregulin 4 (NRG4), growth

differentiation factor 15 (GDF-15), and fibroblast growth factor

21 (FGF21). While the precise impact of these adipokines on

AS remains to be fully elucidated, they hold potential for

further exploration in AS research.

Adipose tissue is divided into WAT, BAT and BeAT, the

adipocytes of which exhibit different morphological and

functional characteristics. BeAT is a reversible state between

WAT and BAT and is homologous with WAT,which is

considered “browned”WAT (29). Perivascular adipose tissue

(PVAT), a connective tissue that envelopes the adventitia of the

blood vessels and provide mechanical support, serves as a
References

l dysfunction, intimal hyperplasia, and EndMT.
agocytes adhesion.

(10–12)

ogression and unstable plaques.
tion.
ture.

(7)

ocytes is significantly increased, followed by migration to the intima

is, phagocytosis, and scavenger receptors (including SR-A, CD 36,
flux pathways induces the formation of cholesterol crystals that
on.

(13, 14)

l, secretes pro-inflammatory adipokines, induces endothelial
the development of AS.

(15)

1; ABCG1, ATP-binding cassette transporter G1; ECs, endothelial cells; EndMT,

A scavenger receptor; SR-BI, scavenger receptor class B type I; VSMCs, vascular
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distinctive form of adipose tissue (30). Perivascular adipose tissue

could undergo phenotype change and participate in vascular

inflammation and remodeling during atherosclerosis (31).

Adipose tissue is now recognized as the largest endocrine organ

in the body and a metabolically active organ that plays a vital

role in regulating the balance of the systemic energy environment

(32). The dysfunction of adipose tissue is directly related to

various metabolic diseases, including obesity, CVD, and type 2

diabetes (33, 34). Adipokines are bioactive proteins or products

secreted from adipose tissues, and they could exert their effect on

local and distant tissues through autocrine, paracrine, and

endocrine mechanisms (19, 35). Adipokines could also bind to

surface receptors on endothelial cells (ECs), VSMCs, and

macrophages, influencing their behavior and modulating AS

lesion progression. While adipokines such as adiponectin, NRG4,
TABLE 2 Adipokines for atherosclerosis.

Classification Adipokines Role in the development o
Anti-atherogenic adipokines Adiponectin ↓VCAM-1, ICAM-1 expression in

↓proliferation of VSMCs, vascular
↑ABCA1/ABCG1 expression in ma

NRG4 ↓ECs inflammation and expression
↓macrophages aggregation

FGF21 ↓apoptosis and pyroptosis of ECs
↓calcification of VSMCs
↑ABCA1/ABCG1 expression in ma

Irisin ↑the activity of eNOS
↓osteogenic transition and pyropto
↓apoptosis and inflammatory differ

SFRP5 ↑angiogenesis
↓calcification of VSMCs

Pro-atherogenic adipokines Leptin ↑ECs inflammation and expression
↑proliferation and migration of VS
↑ACAT-1 expression in macrophag

Resistin ↑central leptin resistance
↑adhesion molecules and inflamma
↑phenotypic switching, proliferatio
↑SR-A/CD36 expression in macrop

TSP-1 ↓angiogenesis, ↑ECs senescence via
↓relaxation of VSMCs via CD36- a
↑activation of macrophages

GDF-15 ↑ECs senescence
↑chemotaxis of macrophages, ↑lipid

FABP4 ↑ECs inflammation and expression
↑proliferation and migration of VS
↑lipid accumulation in macrophage

Indeterminate adipokines Visfatin ↑ECs senescence via activation of N
↑iNOS expression in VSMCs via th
and p38 pathway, ↓vascular remod
↑macrophage differentiation

Omentin ↓ECs apoptosis, ↑the activity of eN
↓proliferation and migration of VS
↓SR-A/CD36 expression in macrop
Circulating omentin level ↑in patie

Vaspin ↑ECs NO utilization via the PI3K/A
↓VSMC migration phenotype switc
↓macrophage cholesterol intake via
Vaspin is linked to severity of CAD
Gene variants regulate vaspin level,

Asprosin ↑ECs EndMT via the TGF-β pathw
↑ABCA1/ABCG1 expression in ma
Circulating asprosin level ↓in patie
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and C1q/tumor necrosis factor-related protein 9 (CTRP9) have

been found to play a protective role in AS, others like leptin,

resistin, and thrombospondin-1 (TSP-1) can exacerbate disease

progression. Adipokines exert a complex regulatory role in the

development of AS. Understanding the beneficial and detrimental

effects of specific adipokines can not only serve as biomarkers to

predict AS outcomes but also aid in identifying potential

therapeutic targets for AS treatment.

Adipokines produced by adipose tissue are biologically active.

Obese adipose tissue alters the balance of these adipokines and is

associated with accelerated CVD. In this review, we classified the

role of adipokines in AS progression into five categories:

protective, deteriorating, dual-acting, indeterminate and adipose

tissue-derived bioactive materials, and summarized the role of

these adipokines on AS in Table 2 and Figure 1.
f AS References
ECs, ↑the activity of eNOS
remodeling, and the activity of iNOS
crophages

(36–39)

of adhesion molecules (33, 40, 41)

crophages

(42–45)

sis of VSMCs
entiation of macrophages

(46–50)

(51–53)

of adhesion molecules
MCs, ↑neointimal formation and vascular remodeling
es

(54–59)

tory factors expression in ECs
n, and migration of VSMCs
hages

(60–71)

the CD47 pathway
nd CD47-dependent pathways

(72–78)

accumulation in macrophages
(79–82)

of adhesion molecules
MCs
s

(83–85)

ADPH oxidase, ↑angiogenesis
e ERK1/2 and NF-κB pathway, ↑VSMC proliferation via the ERK1/2
eling

(86–91)

OS via the AMPK/PPARδ pathway
MCs, neointimal formation
hages, ↓atherosclerotic area
nts with CAD

(92–95)

kt pathway, ↓ECs inflammation and EndMT
hing
the NF-κB/miR-33a pathway
and MACE
circulating vaspin and subclinical AS markers: no association

(96–105)

ay
crophages via the p38/ELK-1 pathway
nts with carotid plaques and CAD

(106–109)

(Continued)
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TABLE 2 Continued

Classification Adipokines Role in the development of AS References
Dual-acting adipokines CTRP family CTRP1 ↓adhesion molecules expression in ECs, ↓vascular remodeling

CTRP3 ↑the activity of eNOS via the AMPK pathway, ↓ECs inflammation via the PI3K/Akt/eNOS
pathway
CTRP5 ↑12/15-LOX in ECs via the STAT6 pathway
CTRP9 ↑plaque stabilization, ↓macrophages infiltration in plaque via the AMPK/mTOR pathway
↑autophagy in ECs and macrophages, ↓pro-inflammatory phenotype via the JNK pathway
CTRP12 ↓VSMC proliferation via the TGF-βRII/Smad2 pathway
↑anti-inflammatory phenotype via the miR-155-5p/LXRα pathway
CTRP12 level is inversely associated with CAD severity, CTRP12 ↑in VAT and SAT of obese subjects

(9, 110–122)

Adipose tissue-derived bioactive
materials

Ceramides ↑plaque instabilization
↓ECs NO utilization, ↑uncoupling of eNOS via the H4B/PP2A pathway
Glucosylceramide ↑plaque vulnerability, ↓cholesterol efflux, circulating glucosylceramide level ↑in
patients with CAD
Lactosylceramide ↑VSMCs proliferation

(123–128)

S1P S1P1 ↑collateral circulation to ischemic brain tissue via eNOS in ECs, ↑cholesterol efflux of
atherosclerotic lesions
↑proliferation and migration of VSMCs, ↑neointimal hyperplasia
S1P2 ↑ECs inflammation via the NF-κB and the JNK pathways
S1P3 ↓macrophages cholesterol efflux

(129–134)

Exosomes SAT-derived EXOs:
↑lipolysis in the adipocytes VAT-derived EXOs:
↑pro-inflammatory phenotype by activating NF-κB
PVAT-derived EXOs:
↑ABCA1/ABCG1 expression in macrophages via the miR-382-5p and the BMP4-PPARγ pathway

(135–137)

↑ means increase; ↓ means decrease; AS, atherosclerosis; ABCA1, ATP-binding cassette transporter A1; ABCG1, ATP-binding cassette transporter G1; ACAT-1, acyl-

coenzyme A cholesterol acyltransferase-1; CAD, coronary artery disease; CTRP, C1q/tumor necrosis factor-related protein; ECs, endothelial cells; EndMT, endothelial-

to-mesenchymal transition; eNOS, endothelial nitric oxide synthase; EXOs, exosomes; H4B, tetrahydrobiopterin; ICAM-1, intercellular adhesion molecule-1; iNOS,

inducible nitric oxide synthase; MACE, major adverse cardiac events; NO, nitric oxide; NRG4, neuregulin 4; PVAT, perivascular adipose tissue; SAT, subcutaneous

adipose tissue; SR-A, type A scavenger receptor; SR-BI, scavenger receptor class B type I; S1P, sphingosine-1-phosphate; TSP-1, thrombospondin-1; VAT, visceral

adipose tissue; vaspin, visceral adipose tissue-derived serpin; VCAM-1, vascular cellular adhesion molecule-1; VSMCs, vascular smooth muscle cells.
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2. Protective adipokines for AS

2.1. Adiponectin

Adiponectin is a protein-like adipokine secreted by adipocytes

(138). It is secreted as multimers of different molecular weights:

hexameric, trimeric, and globular. Adiponectin binds to receptors

to regulate lipid metabolism and insulin sensitivity. Adiponectin

is composed of a globular domain and a collagen-like domain. It

interacts with three types of receptors: adiponectin receptors

(AdipoRs), calreticulin, and T-cadherin (139). Notably,

T-cadherin exhibits high expression levels in the cardiovascular

system (140). The binding of the globular domain of adiponectin

to T-cadherin has been shown to have beneficial effects on

intimal hyperplasia and AS (141). Additionally, the adiponectin/

T-cadherin system plays a role in promoting the synthesis of

exosomes, small extracellular vesicles, while simultaneously

reducing the release of cellular ceramide (142). This dual

mechanism contributes to the modulation of insulin sensitivity,

thereby potentially mitigating the development of insulin

resistance (143). There are two AdipoR types, AdipoR1 and

AdipoR2 (144). AdipoR1 and AdipoR2 may have opposite effects

on obesity resistance and glucose clearance by activating 5′
AMP-activated protein kinase (AMPK)α1 and AMPKα2,

respectively.

Decreased plasma adiponectin levels are associated with an

increased risk of intima-media thickness (145) and intracranial

AS stenosis (146). Gasbarrino et al. analyzed plasma adiponectin
Frontiers in Cardiovascular Medicine 04
in patients with severe carotid AS undergoing carotid

endarterectomy (147). They found that high circulating

adiponectin levels were associated with a lower risk of

atherosclerotic cardiovascular events. Adiponectin levels are lower

in unstable plaques than in stable plaques (148), suggesting that

adiponectin levels are negatively associated with the risk of CVD

events. Smoking is an essential trigger of AS, and nicotine in

tobacco accelerates the progression of AS by reducing

adiponectin expression in adipocytes via ATP-dependent

potassium channels (149). Physiological concentrations of

adiponectin can inhibit the expression of cell adhesion molecules

vascular cellular adhesion molecule-1 (VCAM-1), E-selectin, and

intercellular adhesion molecule-1 (ICAM-1) on EC (36).

Inducible nitric oxide synthase (iNOS) is a nitric oxide (NO) and

peroxynitrite-forming enzyme that is overproduced in vascular

diseases such as AS or diabetes-related vasculopathy and

promotes vascular inflammation and endothelial dysfunction.

The globular domain treatment of adiponectin significantly

increased endothelial nitric oxide synthase (eNOS) activity but

decreased iNOS activity in hyperlipidemic vessels (37), which

suggested that adiponectin protects the endothelium from

hyperlipidemia through multiple mechanisms. Adiponectin

inhibits the mammalian target of rapamycin (mTOR)/p70S6K

signaling-mediated proliferation of VSMCs in a receptor-

activation-AMPK-dependent (38) or AMPK-independent (39)

manner. In addition, adiponectin attenuates angiotensin II–

induced vascular remodeling through NO–dependent inhibition

of the RhoA/Rho-associated protein kinase pathway and reactive
frontiersin.org
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FIGURE 1

Effect of adipokines on atherosclerosis. Adipokines play complex regulatory roles in atherosclerosis. From a molecular perspective, certain adipokines
such as omentin, irisin, CTRP3, vaspin, and asprosin have been shown to exert protective effects on endothelial cells. Conversely, resistin and
ceramide have been found to have detrimental effects on endothelial cells. Adiponectin, CTRP9, vaspin, asprosin, and perivascular adipose tissue-
derived EXOs have demonstrated the ability to inhibit macrophage foam cell formation. On the other hand, leptin, S1P, and visceral adipose tissue-
derived EXOs have been found to promote macrophage foam cell formation. Additionally, adiponectin and CTRP12 have been shown to inhibit
vascular smooth muscle cell proliferation, while leptin, resistin, and visfatin have been found to promote vascular smooth muscle cell proliferation.

Luo et al. 10.3389/fcvm.2023.1235953
oxygen species production in vascular smooth muscle (150).

Adiponectin also regulates lipid efflux in macrophages.

Adiponectin reduces lipid accumulation by promoting ATP-

binding cassette transporter A1 (ABCA1)- and ATP-binding

cassette transporter G1 (ABCG1)-dependent cholesterol efflux

through activation of the peroxisome proliferator-activated

receptor (PPAR)γ/liver × receptor α signaling pathway (151, 152).

Activation of the AdipoR1/AMPK pathway in macrophages

reduces apoptosis and improves cholesterol efflux from foam

cells, thereby reducing foam cell cholesterol and triglyceride

accumulation (153, 154).
2.2. Neuregulin 4

NRG4, a novel adipokine, is a member of the NRG family of

neuromodulatory proteins. It is mainly expressed in specific

peripheral tissues, with the highest expression levels observed in

BAT. Li et al. reported that NRG4 could regulate glucose

metabolism and improve insulin resistance (155); however,

NRG4 has been less studied in AS. NRG4 expression is

upregulated in PVAT after vascular injury (33), which mediates

ECs to attenuate the expression of inflammatory factors, tumor
Frontiers in Cardiovascular Medicine 05
necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-

1β (IL-1β), and adhesion molecules VCAM-1 and ICAM-1

through the protein Kinase B (Akt)/nuclear factor kappa-B (NF-

κB) pathway (40) and inhibits leukocyte migration to the

subintima and macrophage accumulation within AS plaques (41).

NRG4 also attenuates the levels of inflammatory cytokines in

classically activated macrophages (33). The current study suggests

that NRG4 inhibits AS development and exerts atheroprotective

effects on AS lesions.
2.3. FGF21

FGF21 is a signaling protein synthesized in WAT and BAT

(156, 157). Exercise can increase plasma levels of FGF21,

primarily due to hepatic secretion (158). FGF21 binds to FGF

receptors, with the highest affinity for FGF receptors 1 subtype,

and β-klotho serves as an essential coreceptor (159). FGF21 has

the capacity to reduce fat mass, decrease insulin resistance, and

lower plasma glucose and triglyceride levels. Research on FGF21

in adipocytes has primarily focused on human and mouse

adipocytes. FGF21 can stimulate glucose uptake in adipocytes by

inducing the expression of glucose transporter 1. This process
frontiersin.org
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operates independently of insulin and relies on the extracellular

regulated protein kinases 1/2 (ERK1/2) signaling pathway and

the activation of the serum response factor Ets-like protein 1

(160, 161). FGF21 can stimulate adipocytes to produce and

secrete adiponectin through the induction of adiponectin gene

expression and PPARγ-dependent mechanisms (162).

Additionally, FGF21 can induce browning and adaptive

thermogenesis in adipose tissue through various mechanisms,

including the induction of PPARγ coactivator 1α and the

chemokine C–C motif chemokine ligand 11 (163).

FGF21 exhibits a protective effect on AS. It can inhibit EC

apoptosis by suppressing the Fas signaling pathway (42) and

inhibit the activation of the NLRP3 inflammasome, thereby

preventing EC pyroptosis (43). Aerobic exercise can promote this

process by increasing FGF21 levels and downregulating NLRP3

expression (164). Furthermore, FGF21 can promote cholesterol

efflux by inducing the expression of ABCA1 and ABCG1 in

foam cells and reduce cholesterol accumulation in foam cells

through AMPK-mediated autophagy (44, 165). FGF21 also

inhibits the calcification of VSMCs (45). These findings suggest

that FGF21 may be a potential therapeutic target for preventing

and treating AS by modulating EC function, cholesterol

metabolism, and vascular calcification.
2.4. Irisin

Irisin, an adipomyokine synthesized by skeletal muscle and

adipose tissue (166, 167), results from the proteolytic cleavage of

membrane-bound FNDC5 (168). It plays a crucial role in

regulating energy metabolism and improving insulin resistance

by binding to various receptors, including fibroblast growth

factor receptors and hemojuvelin (169). Additionally, irisin

promotes mitochondrial synthesis and induces browning of WAT

(168). Its expression in adipose tissue is decreased in obese

individuals (170). Serum irisin levels are significantly lower in

patients with coronary artery disease (CAD) and ischemic stroke

(171–173), making it a potential predictive marker for early

CVDs. Irisin enhances lipid metabolism by facilitating the

transport of biliary cholesterol and fecal cholesterol excretion

(174). In the experimental model, Irisin-ApoE−/− mice are a

strain obtained by crossing Irisin transgenic mice with ApoE−/−

mice. Compared to ApoE−/− mice, an improvement in

hyperlipidemia was observed in Irisin-ApoE−/− mice, and the

irisin levels were negatively correlated with high-density

lipoprotein cholesterol (175). Irisin exerts a protective effect

against vascular injury and ECs inflammation induced by ox-

LDL (176, 177). The protective effect of irisin on ECs is

mediated through the activation of the AMPK-PI3K-Akt-eNOS

signaling pathway (46). Moreover, irisin reduces macrophage

apoptosis induced by ox-LDL, potentially through the inhibition

of endoplasmic reticulum stress signaling pathways (47). Irisin

also promotes the anti-inflammatory differentiation of

macrophages by activating JAK2-STAT6-dependent signaling

(48). Additionally, irisin mitigates vascular calcification by

suppressing the osteogenic transition and pyroptosis of vascular
Frontiers in Cardiovascular Medicine 06
smooth muscle cells (49, 50). In conclusion, irisin, an

adipomyokine with diverse physiological functions, demonstrates

significant potential as a biomarker and therapeutic target in

various metabolic and CVDs. However, further research is

needed to fully elucidate the underlying mechanisms and explore

the clinical implications of irisin in human health and disease.
2.5. Secreted frizzled-related protein 5

Secreted frizzled-related protein 5 (SFRP5) is an adipokine

synthesized by white adipocytes (178). Its expression level is

disrupted in obesity under metabolic stress conditions. Studies by

Ouchi et al. have demonstrated that SFRP5 expression in adipose

tissue is reduced in obesity (179). Functionally, SFRP5 binds to

Wnt ligands, thereby interfering with Wnt signaling pathway

transduction, which is crucial for promoting adipogenesis (180).

Emerging research has consistently shown decreased circulating

levels of SFRP5 and increased levels of Wnt5a in patients with

CAD and obesity when compared to healthy controls (181, 182).

The decrease in circulating SFRP5 levels may serve as an

indication that the clearance function of SFRP5 during the

obesity stage can still be compensated. By binding to the Wnt

ligand Wnt5a, SFRP5 inhibits the activation of the Wnt non-

canonical pathway, subsequently promoting inflammation in

macrophages and adipose tissue (179).

In the context of vascular health, SFRP5 plays a notable role in

inhibiting high phosphate-induced calcification of VSMCs. It

achieves this through suppression of the Wnt/β-Catenin pathway

and the Wnt3a-mediated signaling (51, 52). In addition to its

impact on vascular health, SFRP5 also exhibits angiogenic

properties in human umbilical vein ECs by inhibiting the

Wnt5a/c-Jun N-terminal kinase (JNK) signaling pathway (53).

Furthermore, SFRP5 has been observed to mitigate apoptosis

induced by oxidative stress in human aortic ECs (183). The

aforementioned findings shed light on the complex involvement

of SFRP5 in adipose tissue regulation, metabolic disorders,

vascular calcification, and EC function, contributing to our

understanding of the intricate interplay between adipokines and

physiological processes.
3. Deteriorating adipokines for AS

3.1. Leptin

Leptin is a pleiotropic hormone secreted by adipocytes,

involved in various biological processes, and including

inflammatory responses, immune function, and regulation of

biological behavior and metabolism. Bäckdahl et al. classified

human WAT into three types of mature adipocytes based on

distinct transcriptional profiles and spatial arrangement:

AdipoLEP, AdipoPLIN, and AdipoSAA. Among these, adipocytes

expressing the marker gene LEP, which is associated with the

synthesis of the adipokine leptin, were categorized as AdipoLEP

(184). Leptin synthesis is regulated by the lipid content in
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adipocytes, the Lepob gene, and adipocyte size (185, 186). There are

six subtypes of leptin receptors (LepRa to LepRf) (187), and leptin

acts on receptors in the hypothalamus to regulate biological

behavior, food intake, and indirectly regulate glucolipid

metabolism. Thus, ob/ob mice (leptin deficient) and db/db mice

(leptin receptor deficient) are commonly used models of

hyperglycemia and obesity. The same receptors that respond to

leptin are also present in the vasculature. In adipose metabolism

disorders with reduced serum leptin levels, leptin treatment

ameliorates the endothelial-to-mesenchymal transition (188),

suggesting an endothelial protective effect of leptin at

physiological concentrations.

Central leptin resistance and preservation of peripheral

vascular leptin responsiveness allow high leptin concentrations to

induce vascular dysfunction (186). A high leptin concentration

increases ERK1/2 phosphorylation and NF-κB activation in ECs

(54), which leads to increased secretion of the inflammatory

factor TNF-α, expression of the cell adhesion molecule VCAM-1

(55), and endothelial leptin resistance (186), disrupting

endothelial barrier function. It also exacerbates neointimal

growth and vascular remodeling by promoting VSMCs

proliferation and metalloproteinase-9 expression that induces

migration (56, 57). However, in apolipoprotein E deficient

(ApoE−/−) mice, leptin-induced neointima formation was entirely

blocked (58), indicating that ApoE mediates leptin-induced

neointima formation. Additionally, leptin promotes foam cell

formation. High leptin concentrations upregulate the expression

of acyl-coenzyme A cholesterol acyltransferase-1 in acetylated

LDL-induced macrophages, increasing intracellular cholesteryl

ester accumulation and promoting foam cell formation (59).

One study demonstrated that the decreased expression of type

A scavenger receptor (SR-A) and platelet glycoprotein 4 (CD36) in

macrophages of ob/ob mice resulted in reduced macrophage

cholesterol accumulation and decreased foam cell formation

(189). However, another study reported that CD36 expression

was upregulated in macrophages of ob/ob mice in the presence of

defective insulin signaling, leading to increased macrophage

foaminess (190). This discrepancy may be because different

cellular microenvironments interfere with the macrophage

phenotype. In conclusion, high leptin levels can disrupt ECs

barrier function, promote VSMCs proliferation and migration,

and accelerate AS progression by exacerbating lipid accumulation

in foam cells.
3.2. Resistin

Resistin belongs to a family of cysteine-rich secreted proteins

that are almost exclusively derived from adipose tissue in

rodents, with elevated adipose expression and serum levels in

models of obesity and insulin resistance (191). Resistin is

primarily released by visceral WAT macrophage, exacerbating

WAT inflammation (192, 193). Additionally, elevated resistin

triggers central leptin resistance (194), exacerbating impaired

glucose and lipid metabolism. High resistin expression levels in

circulating (60) and unstable plaques (195) in carotid plaque
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subjects suggest that resistin correlates with carotid disease

severity and may serve as a potential marker of plaque instability.

Resistin was positively correlated with the degree of thoracic

aortic calcification (196) and coronary artery calcification (191),

all suggesting a significant association between resistin and the

severity of CVD.

Resistin directly contributes to EC activation by promoting the

release of the endothelin-1 (197). The major cardiovascular risks

contribute to an increase in vascular reactive oxygen species

production, which in turn promotes the oxidative degradation of

tetrahydrobiopterin, a critical cofactor for eNOS. This process

leads to eNOS “uncoupling” and reduced NO production (198).

Resistin directly induces eNOS downregulation by excessive ROS

production and activation of p38 and JNK in human coronary

artery ECs (61). Resistin exacerbates monocyte/macrophage

adhesion by stimulating EC upregulation of adhesion molecules

VCAM-1 and ICAM-1 via the NF-κB pathway and p38 mitogen-

activated protein kinase (MAPK) pathway (62, 63, 199).

Additionally, resistin enhances inflammatory factors TNF-α and

IL-1β expression via the NF-κB signaling pathway in response to

stimulation of human coronary artery ECs (64). PVAT-derived

resistin-cultured VSMCs upregulate osteopontin, a hallmark of

the phenotype of proliferative VSMCs, via the transcription

factor AP-1 (200). Resistin acts on VSMCs in a paracrine or

endocrine manner to promote VSMC migration via the protein

kinase C protein ϵ pathway (65, 66) and induce human aortic

smooth muscle cell proliferation via the ERK 1/2 and Akt

signaling pathways (67), respectively. Additionally, protein kinase

C protein ϵ-mediated Nox activation induces ROS production,

causing VSMC dysfunction and endothelial proliferation (68). In

the absence of natural or modified lipoproteins, resistin induces

an increase in cholesterol and triglyceride cell mass in human

macrophages (201). In contrast, ox-LDL-treated macrophages

significantly increased the expression of resistin mRNA (69).

Resistin induces a pro-inflammatory phenotype in macrophages

via an NF-κB-dependent pathway, increasing macrophage

inflammatory factors IL-1, IL-6, IL-12, and TNF-α, as well as

VCAM-1, exacerbating vascular inflammation and promoting AS

progression (62, 70, 71). Resistin upregulates macrophage SR-A

and CD36 via transcription factors AP-1 and PPARγ (69),

respectively. Resistin enhances proteasome-mediated degradation

of ABCA1, exacerbating cholesterol uptake and facilitating foam

cell formation (202). In summary, resistin directly stimulates

VSMC proliferation and migration and promotes the

inflammatory phenotype of ECs and macrophages.
3.3. TSP-1

TSP-1 is a multifunctional glycoprotein secreted by platelets

(203), macrophages (204), and adipocytes (205). TSP-1 exerts

multiple biological effects by binding to extracellular matrix

proteins and cell surface receptors to regulate cell and cell-matrix

interactions (206). TSP-1 expression was increased in plasma and

visceral adipose tissue (VAT) in both diabetic and obese patients

and animals (207). Moreover, TSP-1 expression was greater in
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VAT than in subcutaneous adipose tissue (SAT) in obese subjects

(205). Varma et al. found that it was adipose tissue-derived

macrophages rather than THP-1-derived macrophages that

expressed TSP-1 (205). Hence, TSP-1 is suggested to be a

candidate gene for visceral obesity (208). As an essential ligand

of TSP-1, CD36 is also a fatty acid translocase, suggesting that

TSP-1 may control the metabolism of fatty acids in adipocytes.

Loss of TSP-1 reduced macrophage infiltration in adipose tissue,

suggesting that TSP-1 may also regulate inflammatory cells

infiltrating expanded adipose tissue.

Not only do CVD risk factors promote TSP-1 expression in

adipose tissue, but leptin also promotes TSP-1 synthesis in

VSMCs, thus hastening AS progression. High leptin

concentrations upregulate TSP-1 expression in VSMCs via JAK2

and MAPK-dependent pathways (209). Furthermore, leptin

promotes a synergistic interaction between the transcription

factor interferon regulatory factor-1 and the cAMP response

element binding protein at the promoter of the TSP-1 gene that

drives TSP-1 transcription in VSMCs (210). Moreover, TSP-1

deficiency inhibited leptin-induced VSMC dedifferentiation, lipid

loading, and increased plaque area (207), suggesting that the pro-

AS effect of leptin is mediated via the TSP-1 pathway.

Diabetes upregulates TSP-1-CD47 signaling in ECs to induce

senescence and impair angiogenesis (72). Increased TSP-1 can

also interfere with ECs chemotaxis, inhibit ECs proliferation, and

capillary formation, thereby inhibiting angiogenesis in vitro

(73–75). Anti-TSP-1 antibody C6.7 blocks the inhibitory effect of

TSP-1 on ECs growth and reendothelialization (211). NO/cGMP

signaling enhances intracellular calcium ions and relaxes VSMCs

via cGMP-dependent protein kinase (212), while exogenous

TSP-1 blocks this diastolic effect of NO via a CD36-dependent

pathway (76). Endogenous TSP-1 has the same effect via CD36-

and CD47-dependent pathways and also blocks NO-driven ECs

adhesion via the CD47 pathway (76, 77). In their study, Moura

et al. found that TSP-1 expression increased after carotid ligation

and was able to activate VSMCs to induce de novo neointima

formation (213). In addition, Li et al. found that TSP-1 activates

macrophages through a toll-like receptor 4-dependent pathway

(78). All of the above suggest that TSP-1 may be a target of AS

lesions and play an aggressive role in AS progression.
3.4. Growth differentiation factor 15

Growth differentiation factor 15 (GDF-15), a member of the

TGFβ superfamily, is expressed in various tissues, including the

placenta (214), liver (215), kidney, and brown adipose tissue

(216). GDF-15 may play a role in the metabolic dysregulation

associated with obesity. Studies have shown that serum levels of

GDF-15 are elevated in obese and type 2 diabetes patients

compared to lean control groups (217). Similarly, circulating

levels of GDF-15 are higher in both obese humans and rodents

(218). In the latest research by Sjøberg et al., it was discovered

that GDF-15 increases local insulin-stimulated glucose uptake in

BAT and WAT through β-adrenergic signaling (219). Notably,

GDF-15 expression is strongly induced in BAT in response to
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cold exposure, while circulating levels of GDF-15 remain

unchanged (216). The released GDF-15 from brown adipocytes

can target macrophages and downregulate the expression of pro-

inflammatory genes through paracrine effects (216). Research has

also revealed that mice with GDF-15 deficiency exhibit elevated

levels of cholesterol and triglycerides in circulation, and this

effect is independent of the ApoE gene (220). Moreover, GDF-15

induces anorexia and weight loss through its interaction with the

glial-derived neurotrophic factor receptor alpha-like in the

central nervous system (221). However, an analysis of the

relationship between GDF-15 and weight in non-obese

monozygotic twins found a negative correlation between serum

levels of GDF-15 and body mass index (217). These findings

suggest that the observed increase in GDF-15 in obesity may be

a consequence rather than a cause of obesity.

Compared to the normal control group, patients with CAD

exhibit significantly elevated circulating levels of GDF-15,

suggesting that GDF-15 may serve as an independent predictor

of CAD mortality (222). Furthermore, elevated plasma levels of

GDF-15 have been identified as an independent predictor of

long-term adverse cardiovascular events in patients with

moderate CAD (223). These findings indicate that GDF-15 may

play a crucial role in the occurrence and progression of CAD. In

addition, increased expression of GDF-15 has been observed in

atherosclerotic vessels (220), while systemic deficiency of GDF-15

in mice has shown improvements in luminal narrowing in

affected vessels (224). Treatment of macrophages with GDF-15

leads to increased levels of autophagy and intracellular lipid

accumulation, thereby affecting lipid homeostasis (79).

Furthermore, GDF-15 has been shown to exert a pro-

inflammatory effect in the progression of AS by mediating the

chemotaxis of macrophages through the CCR2 pathway (80).

The expression of GDF-15 in ECs is upregulated in response to

inflammatory reactions and ROS-mediated cellular senescence

(81, 225), and it exerts paracrine effects that impact neighboring

non-senescent cells (82). These findings suggest that during

vascular stress, the expression of GDF-15 is elevated, and it plays

a detrimental role in the progression of AS.
3.5. Fatty acid-binding protein 4

Fatty acid-binding protein 4 (FABP4), primarily expressed in

adipocytes and macrophages (226). The expression of FABP4 can

be reduced through administration of metformin (227) and

atorvastatin (228). Under normal conditions, FABP4 is expressed

in capillary and venous ECs, but not in arterial ECs (229).

However, damaged arteries can induce ectopic expression of

FABP4, although the specific receptors involved in this process

remain unclear (230). FABP4 has been implicated in AS, and

studies using small-molecule inhibitors of aP2 have demonstrated

effective treatment for severe AS and type 2 diabetes in mouse

models (231).

FABP4 is closely associated with lipid accumulation in

monocytes and macrophages. Inhibition of FABP4 can reduce

ox-LDL-induced monocyte adhesion by downregulating the
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expression of integrin β2, integrin α4, and P-selectin glycoprotein

ligand 1 (83). Treatment with FABP4 inhibitors in macrophages

significantly reduces cholesterol accumulation by increasing the

expression of ABCA1 (231). FABP4 promotes inflammatory

responses by inhibiting the PPARγ-LXRα-ABCA1 pathway,

leading to cholesterol ester accumulation and foam cell

formation, and by activating the JNK-AP-1 signaling pathway

(84). Metformin reduces lipid accumulation in macrophages by

decreasing FOXO1-mediated FABP4 transcription (227).

Regarding FABP4 and VSMCs, it has been found that FABP4

can promote migration and proliferation of coronary artery

smooth muscle cells through a MAPK-dependent pathway (85).

In the context of ECs, inhibition of FABP4 can reduce ox-LDL-

induced adhesion of coronary artery ECs by decreasing the

expression of ICAM-1, VCAM-1, and P-selectin (83).

Overall, FABP4 plays a significant role in various cellular

processes associated with AS, including monocyte adhesion,

cholesterol accumulation, foam cell formation, inflammatory

responses, and the behavior of smooth muscle and ECs.

Inhibition of FABP4 has shown promise as a potential

therapeutic strategy for AS and related complications.
4. Dual-acting adipokines

4.1. CTRP family

C1q/tumor necrosis factor-related proteins (CTRPs) are

paralogous homologs of adiponectin. To date, 15 members of

this family (CTRP1 to CTRP15) have been identified, exhibiting

different or even opposite physiological functions (232). In

contrast to adiponectin, which is expressed only in adipocytes,

CTRPs are widely distributed in vivo and are expressed in the

heart, liver, and kidney (232). CTRP1 synthesized in adipose

tissue induces proinflammatory and pro-foam cell formation,

accelerating AS progression. However, CTRP1 expressed in the

vessels has an antithrombotic effect after AS plaque rupture.

CTRP1 upregulates ECs adhesion molecule expression via the

p38 MAPK/NF-κB pathway (9).

TNF-induced adhesion molecule and cytokine expressions are

reduced in ECs and macrophages of CTRP1-deficient mice (9),

indicating that CTRP1 induces adhesion molecule expression,

inflammatory cytokine production, and promotes leukocyte

adhesion to ECs. Moreover, CTRP1 exerts antithrombotic effects

by inhibiting collagen-induced platelet agglutination (233).

CTRP1 enhances endothelial adhesion molecule-mediated

leukocyte homing and accelerates AS progression. CTRP1

overexpression promotes blood monocyte adherence to the vessel

wall and their differentiation into macrophages (9). After

entering the subendothelium, ox-LDL can induce macrophage

CTRP1 expression, leading to enhanced expression of pro-

atherogenic inflammatory factors, and PPARγ regulates this effect

(234). Systemic administration of an adenoviral vector encoding

CTRP1 reduces the growth of human VSMCs via a cAMP-

dependent pathway attenuates intimal thickening after vascular

injury (110), and prevents pathological vascular remodeling.
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In rodent adipose tissue (235), CTRP3 expression is the highest

in the mesentery, followed by the epididymis and subcutaneous

tissue, and is relatively low in the thorax, perirenal, and BAT.

The sources of CTRP3 in adipose tissue are adipocytes,

monocytes (236), and fibroblasts (237). CTRP3 is an adipokine

with vascular endothelial–protective effects. Decreased CTRP3

expression in epicardial adipose tissue increases the risk of AS in

patients with CAD (238). CTRP3 activates the PI3K/Akt/eNOS

pathway to attenuate ox-LDL–induced inflammatory responses in

mouse aortic ECs (111). The C1q-like globular domain of

CTRP3 has been shown to enhance diastolic function in ECs by

activating the AMPK/eNOS/NO signaling pathway, thereby

preserving vascular endothelial function (112).

CTRP5 is a pro-atherogenic glycoprotein secreted by adipocytes.

Adipocyte CTRP5 expression levels in SAT are positively correlated

with the degree of obesity in children (239). Serum CTRP5 levels

were increased in rodent models of obesity (232). Upregulation of

12/15-lipoxygenase, a key enzyme mediating LDL transport and

oxidation in ECs via the signal transducer and activator of

transcription 6 signaling pathway, promotes LDL transport across

the endothelium and oxidative modifications (113). The globular

form of CTRP5 is responsible for diabetic vascular EC dysfunction

via Nox1-mediated mitochondrial apoptosis (240). Moreover,

CTRP5 can inhibit the expression of uncoupling protein 1, a

negative regulator of WAT browning, and cold exposure decreases

CTRP5 expression in SAT (241).

The human CTRP9 gene is located on chromosome 13q12.12

(242) and encodes two isoforms, CTRP9A and CTRP9B, whereas

mice lack CTRP9B (243). While CTRP9A is secreted as a

multimeric protein, CTRP9B requires physical association with

CTRP9A or adiponectin for secretion (242). CTRP9 stabilizes

plaques and is atheroprotective. Reduced CTRP9 levels are an

independent risk factor for CAD in AS patients with thin fibrous

caps (114). Defects in the CTRP9 gene alter the gut microbial

composition of mice, increase serum cholesterol and LDL levels,

and promote AS progression (244). Transplantation of wild-type

mice into the intestinal microflora can reverse this effect. Zhang

et al. found that CTRP9 exerts atheroprotective effects via the

CTRP9-AMPK-NLRP3 inflammatory vesicle pathway (245).

CTRP9 promotes EC function and ischemia-induced

revascularization through an eNOS-dependent mechanism (246).

CTRP9 inhibits EC senescence by promoting autophagy and

autophagic flow by activating the AMPK and AMPKα/KLF4

signaling pathways (115, 116). VSMC apoptosis is closely

associated with the stability and progression of AS plaques.

CTRP9 induces macrophage polarization to the pro-

inflammatory phenotype and promotes the apoptosis of VSMCs

by activating the JNK pathway (117). CTRP9 overexpression

significantly attenuated AS lesion size and reduced the

accumulation of macrophages and VSMCs in ApoE−/− mice,

which was associated with the activation of the AMPK/mTOR

signaling pathway by CTRP9 to induce autophagy (118). CTRP9

also downregulates the inflammatory response of macrophages

through the AdipoR1/AMPK pathway, attenuates apoptosis,

improves cholesterol efflux from foam cells (153, 245), and

improves AS.
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CTRP12, also known as adipolin, was found to be a conserved

paralog of adiponectin, with the lowest homology to adiponectin

among other CTRPs (247). CTRP12 improves insulin sensitivity

and glycemic control in obese and diabetic mice (248), with

increased expression of CTRP12 in obese VAT and SAT (119).

In CAD subjects, serum CTRP12 levels were negatively correlated

with the extent of stenosis (120), suggesting that CTRP12 may be

an independent protective factor for CAD. CTRP12 reduces the

proliferation of VSMCs and inhibits macrophage inflammatory

mediator gene expression through the TGF-β receptor II/Smad2-

dependent pathway (121, 249). In a study of the effects of

CTRP12 on macrophages, it was found that CTRP12 increases

ABCA1 and ABCG1-dependent cholesterol efflux and promotes

macrophage polarization to the inflammation-ameliorating

phenotype via the miR-155-5p/LXRα pathway (122). The above

findings suggest that CTRP12, a paralog of adiponectin, may

have the same protective role as adiponectin in CVD.
5. Indeterminate adipokines

5.1. Visfatin

Visfatin is also known as pre-B-cell colony-enhancing factor

because it was originally isolated as a secreted factor for

synthesizing IL-7 and stem cell factors that promote the growth

of B cell precursors. Moreover, visfatin is known as nicotinamide

phosphoribosyltransferase (NAMPT), which has enzymatic

activity, and intracellular NAMPT is the rate-limiting enzyme

that catalyzes the salvage pathway of nicotinamide adenine

dinucleotide (NAD+) biosynthesis (250). Extracellular NAMPT,

such as adipocyte-derived NAMPT and plasma NAMPT, is

enzymatically active and can affect vascular function in an

autocrine and paracrine manner (251). Visfatin is mainly

released by visceral WAT macrophages (192), while in unstable

atherosclerotic lesions, visfatin is expressed by foam cells and

macrophages (252). The levels are even higher in subjects with

symptomatic carotid plaques, suggesting that visfatin may play a

role in unstable plaques.

Visfatin expression is highest in PVAT compared to SAT and

VAT. PVAT-derived visfatin stimulates VSMC proliferation

through ERK1/2 and p38 signaling pathways (86). iNOS is a NO

and peroxynitrite-forming enzyme overproduced in vascular

diseases such as AS or diabetes-related vasculopathy and

promotes vascular inflammation and endothelial dysfunction.

Visfatin induces iNOS expression in VSMCs via ERK1/2- and

NF-κB-dependent mechanisms, an effect that can be blocked by

the NAMPT inhibitor APO866 (87). Visfatin enhances IL-1β-

dependent induction of IL-6 and CD36 production through

distinct signaling pathways mediated by JNK and NF-κB,

respectively, which leads to accelerated monocyte/macrophage

differentiation (88). Activation of NADPH oxidase by visfatin

mediates the induction of senescence in human ECs (89).

The above findings suggest that visfatin is a cytokine promoting

vascular inflammation and AS. However, different from these

results, exogenous visfatin ameliorates Ang II-induced endothelial
Frontiers in Cardiovascular Medicine 10
dysfunction and vascular remodeling by targeting NAD/SIRT1

signaling in the study by Zhou et al. (90). Additionally, visfatin

can also activate eNOS and improve EC function and

angiogenesis in vitro and in vivo through Akt and MAPK

pathways (91). However, it is important to note that these

experiments were conducted under conditions of intact

endothelial function. Given that endothelial dysfunction is a

characteristic feature of AS, further investigations are required to

explore the potential beneficial effects of visfatin in the presence

of endothelial dysfunction. These inconsistencies between in vivo

and in vitro results still require further studies to explore the

underlying mechanisms.
5.2. Omentin

Omentin is a relatively new adipokine primarily expressed in

VAT (253, 254). There are two highly homologous omentins:

omentin-1 and omentin-2. Omentin-1 is the predominant

circulating form in human plasma (254). Expression is decreased

in metabolic syndromes, such as obesity (255). Elevated levels of

omentin-1 in advanced coronary plaques and the circulatory

system in patients with acute coronary syndromes may be related

to high counteracting AS reactivity (256). Omentin facilitates

vasodilation, promotes inflammatory resolution, and inhibits

foam cells and neoplastic intima. Compared with ApoE−/− mice,

the atherosclerotic area in the aortic sinus of mice expressing the

human omentin gene in adipose tissue was significantly reduced,

suggesting that omentin may have a protective role in AS (92).

At low serum concentrations, omentin promotes the

differentiation of human umbilical vein ECs into vascular-like

structures to reduce apoptotic activity, activates the AMPK/

PPARδ pathway to increase NO production (93), and stimulates

ECs to exert vasodilatory physiological effects via an eNOS-

dependent mechanism (94), which suggests that circulating

omentin concentrations can be a valuable indicator of endothelial

function. In addition, omentin-1 regulates macrophage function.

Omentin-1 can promote the phosphorylation of Akt in

macrophages to exert anti-inflammatory effects and, in turn,

promote the conversion of monocytes to anti-inflammatory

macrophages in vitro and in vivo (256), retarding AS

development. Omentin inhibits the migration of VSMCs induced

by Ang II and platelet-derived growth factor BB (94), decreases

matrix metalloproteinase 2 expression after TNF-α stimulation,

and significantly inhibits carotid intimal hyperplasia. However,

Saely et al. analyzed plasma omentin in patients with coronary

angiography and found that increased plasma omentin was a

predictor of cardiovascular events in patients with CAD (95).

This study’s contradictory findings compared to previous

conclusions may be attributed to potential racial differences,

highlighting the need for further research and investigation.

Watanabe et al. found that patients with CAD have decreased

omentin levels in the coronary endothelium (256), which may

involve a negative feedback regulation mechanism. This opposite

result suggests that the role of omentin in the process of AS

cannot be fully characterized.
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5.3. Vaspin

Vaspin is a newly identified adipokine belonging to the serine

protease inhibitor family. It is derived from the VAT, and

circulating vaspin concentrations are significantly higher in obese

vs. lean children (257, 258). Elevated circulating vaspin levels

target WAT to exert insulin sensitization and improve glucose

tolerance in high-fat diet-induced obese (DIO) rats (259). The

long-term injection of vaspin into ApoE−/− mice significantly

inhibits the development of AS aortic lesions and increases

plaque stability (96). Vaspin is a novel ligand for the GRP78/

voltage-dependent negative ion channel complex on the ECs

surface (260) and inhibits ECs inflammation by binding to the

receptor. Vaspin improves ECs NO utilization through the PI3K/

Akt signaling pathway (97, 98) and improves hypoxia-stimulated

cell injury and glucose tolerance. Vaspin inhibits

acetylcholinesterase in mesenteric arteries to increase

acetylcholine-induced eNOS phosphorylation (99). Vaspin

inhibits ECs activation induced by the glucose reactive metabolite

methylglyoxal (261) and ECs inflammation mediated by

proinflammatory factors (100). Serum vaspin levels decrease in

patients upon restenosis after coronary stenting. In vitro

experiments have shown that vaspin inhibits the migration of

human coronary artery smooth muscle cells (101), suggesting

that it may improve vascular remodeling and prevent stenosis.

The osteogenic phenotype switching of VSMCs facilitated

vascular calcification. Vaspin eliminates lncRNA LEF1-AS1-

mediated VSMCs osteogenic phenotype switching (102) and

inhibits the progression of vascular calcification, thereby

exacerbating AS. Vaspin inhibits the expression of the receptor

for ox-LDL uptake by macrophages via the NF-κB/miR-33a

pathway (96), increases cholesterol transport protein expression,

and promotes cholesterol efflux, thereby inhibiting the foaming

phenotype of macrophages. Decreased circulating vaspin

concentrations appear to be associated with CAD severity and a

higher incidence of major adverse cardiac events (103, 104).

However, Rueda-Gotor et al. did not observe a statistically

significant association between vaspin and subclinical AS markers

in the study of the relationship between CVD risk and vaspin in

patients with axial spondyloarthritis (105). Moreover, they found

that serum vaspin concentration was regulated by gene variants

(105). Such contradictory results suggest that the role of vaspin

in the AS process still requires further investigation.
5.4. Asprosin

Asprosin is a newly identified adipokine and a C-terminal

cleavage product of pro-fibronectin, primarily expressed in WAT

(262). Placental cells, hepatocytes, and cardiomyocytes can also

produce this adipokine (263, 264). It plays a vital role in glucose

metabolism, appetite regulation, and inflammation; however, little

is known about its role in AS (265). Serum asprosin levels are

considerably higher in patients with carotid plaques and multiple

coronary lesions than in healthy and asymptomatic patients (106,
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107, 266). These results suggest that asprosin may be used as a

marker for detecting CVD and determining its severity. The

expression levels of subcutaneous WAT asprosin are significantly

downregulated in mice fed a high-fat diet (265, 267).

Asprosin directly induces the endothelial-to-mesenchymal

transition in a TGF-β-dependent manner (108). Asprosin

upregulates ABCA1 and ABCG1 expression through activation of

the p38/ELK-1 signaling pathway, inhibites lipid expression in

THP-1 macrophages during lipid deposition, and reduces AS

load in ApoE−/− mice (109). In addition, asprosin negatively

regulates WAT browning and enhances lipid accumulation in

adipose tissue (267). Based on the previous research findings, the

elevated levels of asprosin in the patient’s circulation may be a

result of negative feedback regulation. However, this conclusion

requires further investigation to explore the underlying

mechanisms involved.
6. Adipose tissue-derived bioactive
materials

6.1. Ceramides

Ceramide is the precursor of most sphingolipids and the

central molecule involved in sphingolipid metabolism. It is also

an essential component of cell membranes and a second

messenger in critical signaling pathways in vivo. Ceramide

synthesis occurs in the endoplasmic reticulum (123). There are

three pathways for ceramide synthesis in vivo (268): de novo,

sphingolipase, and remedial. In adipocytes, free fatty acids enter

the cell and combine with coenzyme A to form acyl-CoAs. In

obesity, triglyceride stores in adipocytes become saturated. Excess

acyl-CoAs enter the ceramide synthesis pathway, and the

concentration of ceramide in the cell increases with free fatty

acid accumulation. The adiponectin receptor (AdipoR) has

ceramidase activity (269) and works with ceramidase to maintain

the dynamic balance between ceramide levels in cells and

circulation. Under physiological conditions, ceramide contributes

to the regulation of lipid metabolic homeostasis. However, in

impaired lipid metabolism, ceramide levels are increased due to

the activation of sphingomyelinase, accumulation of fatty acids,

and reduced stimulation of AdipoR by downregulating

circulating adiponectin levels (270).

Elevated circulating ceramide levels contribute to AS

development, insulin resistance, and diabetes mellitus by

modulating insulin sensitivity (270), glucose metabolism (271),

and lipid metabolism. Increased levels of C16:0, C22:0, and

C24:0 ceramides exacerbate the risk of CVDs such as carotid

plaque and stroke (272). Reducing ceramide synthesis in

adipocytes slows AS development. Ceramide induces uncoupling

of eNOS in ECs via the tetrahydrobiopterin/protein phosphatase

2 pathway, decreases NO utilization (124), blocks vasodilation,

and increases the risk of CVD. Simultaneously, ceramide

promotes apoptosis of VSMCs (123) and the development of

unstable plaques. The expression and secretion of

glucosylceramide and lactosylceramide increase in adipocytes
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when adipose tissue metabolism is impaired. Human aortic AS

plaque analysis revealed high glucosylceramide and

lactosylceramide levels (125). Fiorelli et al. found increased

expression of lactosylceramide in monocytes from patients with

acute myocardial infarction (126). In a plasma lipid profile

analysis of 200 patients with carotid plaques, high circulating

glucosylceramide levels increased plaque vulnerability (273).

Lactosylceramide also stimulates VSMC proliferation by

stimulating nuclear antigen expression, promoting aortic VSMC

proliferation (127), and facilitating monocyte migration (126). In

ApoE−/− mice, inhibition of glucosylceramide synthesis promotes

cholesterol excretion (274) and reduces AS plaque load.
6.2. S1P

S1P is a bioactive sphingolipid produced by the

phosphorylation of sphingosine and is catalyzed by two

sphingosine kinase isozymes (SphK1 and SphK2). S1P triggers

inflammation by interacting with five different receptor types,

S1P1–5, which belong to the G-protein-coupled receptor family.

The major S1P receptors in the vascular system are S1P2, S1P1,

and S1P3. The major carrier proteins of S1P are apolipoprotein

M (ApoM) and albumin. The effect of S1P on the inflammatory

response depends on its carrier protein. Most plasma S1P binds

to ApoM to form the ApoM-S1P complex, which preferentially

binds to high-density lipoprotein (HDL) and activates S1P1

(270). Although it is a product of the same sphingomyelin as

ceramide, S1P has a different physiological function. Unlike

S1P2, which aggravates endothelial impairment (129), S1P1 and

S1P3 safeguard ECs barrier function and promote vasodilation to

improve the tissue blood supply (130, 275, 276). S1P1 is

expressed in cerebrovascular ECs and, upon activation, maintains

responsiveness to vasodilatory stimuli, and may ensure collateral

circulation to ischemic brain tissue via eNOS (130).

Apolipoprotein M and S1P1 promote transcytosis of HDL across

endothelial monolayers and induce cholesterol efflux from AS

lesions to reduce the plaque lipid load (131). S1P2 promotes ECs

expression of inflammatory factors and cell adhesion molecules

by activating NF-κB (132) and JNK phosphorylation pathways

(129). S1P2 also induces senescence-associated damage in young

ECs (277). Under hypoxic conditions, S1P3 is activated in ECs,

resulting in NO-dependent vasodilation (278).

S1P1 and S1P2 play different roles in VSMCs proliferation and

migration. After ligation of the carotid arteries in mice, S1P1

expression is upregulated in the carotid arteries. After vascular

injury, the S1P-S1P1 signaling pathway promotes VSMCs

proliferation and migration and promotes neointimal hyperplasia

(133). In contrast, S1P2 can inhibit S1P-induced migration of

human coronary artery smooth muscle cells via HDL (279). S1P1

can also promote the conversion of macrophages to an anti-

inflammatory phenotype (280). High endogenous S1P levels

activate S1P3, impair macrophage cholesterol efflux, and cause

plaque rupture (134). S1P4 is expressed in primary brain

microvascular ECs, and S1P4 expression decreases after stroke

(281); S1P5 reduces activation of the transcription factor NF-κB
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molecules, inflammatory chemokines, and cytokines (282). Both

S1P4 and S1P5 in brain ECs have strong protective barriers.
6.3. Exosomes

After the fusion of the intracellular body of multivesicular

vesicles with the plasma membrane of the parent cell, the inner

vesicles inside are expelled from the cell, forming exosomes

(EXOs) (283). EXOs can affect the composition of the

extracellular matrix and mediate intercellular communication and

information transfer after cellular excretion (284). EXOs differ by

secretory tissue, resulting in heterogeneity in size, composition,

and cellular or organ uptake (285). WAT-derived EXOs are

pro-atherogenic in obesity. In high-fat DIO mice, EXOs from

SAT caused changes in lipid profiles (135). EXOs extracted

from SAT of DIO mice aggravated obesity by affecting fatty

acid metabolism in mice, while EXOs from VAT promoted

macrophage foaminess and converted them to the pro-

inflammatory phenotype by activating NF-κB (136). PVAT-

derived EXOs can reduce macrophage foaminess through the

miR-382-5p- and bone morphogenetic protein 4-PPARγ-

mediated upregulation of the cholesterol efflux transporters

ABCA1 and ABCG1. In contrast, this effect is weakened in CAD

patients due to the downregulation of miR-382-5p expression

(137). EXOs secreted by adipose-derived mesenchymal stem cells

reduce reactive oxygen species production in ECs, promote

angiogenesis (286, 287), and induce inflammation-ameliorating

phenotype polarization of macrophages (288). In addition, ECs-

derived (289) and VSMCs-derived (290) EXOs interact with each

other, forming a new mode of cell-cell communication.

Cytokine-stimulated VSMCs-derived EXOs cause VSMCs self-

malfunction/proliferation and induce ECs malfunction, which

can be attenuated by the miR548ai inhibitor (290). ECs-derived

EXOs, in turn, enhance leukocyte adhesion to VSMCs and

induce VSMCs protein synthesis and senescence (291). Exosomal

lncRNA LIPCAR derived from THP-1 cells modified by ox-LDL

significantly increases the expression levels of cyclin dependent

kinase 2 and proliferating cell nuclear antigen in human vascular

VSMCs to promote AS progression (292). Activated platelet-

derived EXOs (293) decreases macrophage CD36 content,

attenuates the CD36-dependent lipid loading capacity of

macrophages, and inhibites platelet aggregation and thrombosis.
7. Conclusions

The increasing number of overweight and obese individuals has

sparked interest in the role of adipose tissue in inducing associated

comorbidities. Adipokines have been extensively studied due to

their multifactorial properties in regulating physiological

functions. Leptin, adiponectin, resistin, and visfatin have been

extensively studied and play important roles in regulating glucose

metabolism and cardiovascular homeostasis. Additionally,

deteriorative adipokines contribute to metabolic dysregulation,
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endothelial dysfunction, vascular remodeling, and foam cell

formation, leading to AS and an increased risk of CVD. The role

of some adipokines in the pathogenesis of AS has been

established. However, adipokines with unclear roles, such as

omentin, vaspin, etc., still require larger prospective studies in

the general population and patients with CVD to determine

whether measuring circulating levels of adipokines improves AS

prediction. Nevertheless, the functions of adipokines are

coordinated, and changes in one adipokine may affect others.

Adipokines may represent a novel clinical approach to reduce

CVD-related mortality and disability, but only positive

and highly effective results from well-designed clinical trials

will allow broad therapeutic intervention targeting circulating

adipokines.

In recent years, various adipokines have been gradually

recognized has research progressed, and their role in the

mechanism of AS has been explored. On the one hand, the

representative protective adipokines, such as adiponectin,

omentin, CTRP9, and vaspin, mainly prevent AS by protecting

ECs function, inhibiting VSMCs proliferation and migration, and

reducing macrophage inflammation and foam cell formation.

However, their specific regulatory mechanisms differ from each

other. For example, adiponectin inhibits mTOR/p70S6K signaling

(38, 39) to attenuate VSMCs proliferation, whereas CTRP9

promotes VSMCs apoptosis by activating the JNK pathway (117).

Asprosin ameliorates macrophage cholesterol efflux by activating

the p38/ELK-1 signaling pathway to upregulate ABCA1 and

ABCG1 expression (109), whereas CTRP9 improves macrophage

cholesterol efflux via the AdipoR1/AMPK pathway (153).

Similarly, to increase NO utilization by ECs, omentin activates

the AMPK/PPARδ pathway (93), whereas vaspin activates the

PI3K/Akt signaling pathway (98).

In contrast, ceramide, leptin, and CTRP5 are risk factors for

AS, inducing eNOS uncoupling in ECs, promoting neointima

formation, and accelerating macrophage foam cell formation.

Leptin and CTRP5 have different regulatory mechanisms in ECs.

High concentrations of leptin increase phosphorylation of ERK1/

2 and activate NF-κB in ECs, leading to increased expression of

inflammatory factors and cell adhesion molecules, and worsening

endothelial injury (54). CTRP5 promotes LDL transcytosis

transport and oxidative damage by activating the signal

transducer and activator of transcription 6 signaling pathway to

upregulate 12/15-lipoxygenase (113), a key enzyme mediating

LDL transport and oxidation in ECs.

Some adipokines and adipose tissue-derived bioactive

materials, such as S1P, CTRP1, and CTRP3, have both positive
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and negative effects on AS lesions. The inconsistency in the roles

played by different cell types or ligands in the progression of AS

after activation has revealed various roles played by these

adipokines in AS. The roles of EXOs secreted by different

adipose tissues vary, resulting in different effects on the same

cells, forming the basis for the diverse functions of EXOs.

Finally, the role of adipokine asprosin in AS lesions is uncertain.

Due to the limited research on asprosin in vascular lesions, no

conclusions can be drawn, and further investigation is warranted.

In conclusion, adipokines play a complex regulatory role in the

development of AS. Increasing our understanding of which

adipokines are beneficial or detrimental will help predict

atherogenesis biomarkers and help identify potential therapeutic

targets for AS.
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