40 research outputs found
Sequence Analysis of the Potato Aphid \u3cem\u3eMacrosiphum euphorbiae\u3c/em\u3e Transcriptome Identified Two New Viruses
The potato aphid, Macrosiphum euphorbiae, is an important agricultural pest that causes economic losses to potato and tomato production. To establish the transcriptome for this aphid, RNA-Seq libraries constructed from aphids maintained on tomato plants were used in Illumina sequencing generating 52.6 million 75±105 bp paired-end reads. The reads were assembled using Velvet/Oases software with SEED preprocessing resulting in 22,137 contigs with an N50 value of 2,003bp. After removal of contigs from tomato host origin, 20,254 contigs were annotated using BLASTx searches against the non-redundant protein database from the National Center for Biotechnology Information (NCBI) as well as IntereProScan. This identified matches for 74% of the potato aphid contigs. The highest ranking hits for over 12,700 contigs were against the related pea aphid, Acyrthosiphon pisum. Gene Ontology (GO) was used to classify the identified M. euphorbiae contigs into biological process, cellular component and molecular function. Among the contigs, sequences of microbial origin were identified. Sixty five contigs were from the aphid bacterial obligate endosymbiont Buchnera aphidicola origin and two contigs had amino acid similarities to viruses. The latter two were named Macrosiphum euphorbiae virus 2 (MeV-2) and Macrosiphum euphorbiae virus 3 (MeV-3). The highest sequence identity to MeV-2 had the Dysaphis plantaginea densovirus, while to MeV-3 is the Hubei sobemo-like virus 49. Characterization of MeV-2 and MeV-3 indicated that both are transmitted vertically from adult aphids to nymphs. MeV-2 peptides were detected in the aphid saliva and only MeV-2 and not MeV-3 nucleic acids were detected inside tomato leaves exposed to virus-infected aphids. However, MeV-2 nucleic acids did not persist in tomato leaf tissues, after clearing the plants from aphids, indicating that MeV-2 is likely an aphid virus
Recommended from our members
Photobody formation spatially segregates two opposing phytochrome B signaling actions of PIF5 degradation and stabilization.
Photoactivation of the plant photoreceptor and thermosensor phytochrome B (PHYB) triggers its condensation into subnuclear membraneless organelles named photobodies (PBs). However, the function of PBs in PHYB signaling remains frustratingly elusive. Here, we found that PHYB recruits PHYTOCHROME-INTERACTING FACTOR 5 (PIF5) to PBs. Surprisingly, PHYB exerts opposing roles in degrading and stabilizing PIF5. Perturbing PB size by overproducing PHYB provoked a biphasic PIF5 response: while a moderate increase in PHYB enhanced PIF5 degradation, further elevating the PHYB level stabilized PIF5 by retaining more of it in enlarged PBs. Conversely, reducing PB size by dim light, which enhanced PB dynamics and nucleoplasmic PHYB and PIF5, switched the balance towards PIF5 degradation. Together, these results reveal that PB formation spatially segregates two antagonistic PHYB signaling actions - PIF5 stabilization in PBs and PIF5 degradation in the surrounding nucleoplasm - which could enable an environmentally sensitive, counterbalancing mechanism to titrate nucleoplasmic PIF5 and environmental responses
Histidine Alleviates Impairments Induced by Chronic Cerebral Hypoperfusion in Mice
Chronic cerebral hypoperfusion is one of the fundamental pathological causes of brain disease such as vascular dementia. Exploration of effective treatments for this is of great interest. Histidine has been reported to be effective in anti-apoptosis, antioxidant, and against excitotoxicity. In the present study, we aim to investigate whether histidine could have a therapeutic effect on the impairments induced by chronic cerebral hypoperfusion. Cerebral hypoperfusion model was established through bilateral common carotid arteries stenosis (BCAS) operation in Tie2-GFP mice. Radial arm maze and Morris water maze revealed that histidine showed potential improvement of the tendency of cognitive impairments induced by hypoperfusion. The possible mechanisms were further investigated. After administration of histidine in hypoperfusion mice, immunofluorescent BrdU staining revealed more new-born nerve cells. In vivo observation through a cranial window under two-photon laser-scanning microscopy demonstrated that the blood flow velocity in capillary was improved, the distance between the astrocytes and the penetrating artery was shortened. Histidine administration also significantly increased the protein expression level of zonula occludens protein 1, an indicator of the integrity of blood–brain barrier (BBB). These results suggest that histidine could alleviate the impairments induced by chronic cerebral hypoperfusion in mice, and this effect may be related to the neurogenesis, astrocytes, and the integrity of the BBB
Classification and phylogenetic analyses of the Arabidopsis and tomato G-type lectin receptor kinases
Abstract Background Pathogen perception by plants is mediated by plasma membrane-localized immune receptors that have varied extracellular domains. Lectin receptor kinases (LecRKs) are among these receptors and are subdivided into 3 classes, C-type LecRKs (C-LecRKs), L-type LecRKs (L-LecRKs) and G-type LecRKs (G-LecRKs). While C-LecRKs are represented by one or two members in all plant species investigated and have unknown functions, L-LecRKs have been characterized in a few plant species and have been shown to play roles in plant defense against pathogens. Whereas Arabidopsis G-LecRKs have been characterized, this family of LecRKs has not been studied in tomato. Results This investigation updates the current characterization of Arabidopsis G-LecRKs and characterizes the tomato G-LecRKs, using LecRKs from the monocot rice and the basal eudicot columbine to establish a basis for comparisons between the two core eudicots. Additionally, revisiting parameters established for Arabidopsis nomenclature for LecRKs is suggested for both Arabidopsis and tomato. Moreover, using phylogenetic analysis, we show the relationship among and between members of G-LecRKs from all three eudicot plant species. Furthermore, investigating presence of motifs in G-LecRKs we identified conserved motifs among members of G-LecRKs in tomato and Arabidopsis, with five present in at least 30 of the 38 Arabidopsis members and in at least 45 of the 73 tomato members. Conclusions This work characterized tomato G-LecRKs and added members to the currently characterized Arabidopsis G-LecRKs. Additionally, protein sequence analysis showed an expansion of this family in tomato as compared to Arabidopsis, and the existence of conserved common motifs in the two plant species as well as conserved species-specific motifs
Recommended from our members
Classification and phylogenetic analyses of the Arabidopsis and tomato G-type lectin receptor kinases.
BACKGROUND:Pathogen perception by plants is mediated by plasma membrane-localized immune receptors that have varied extracellular domains. Lectin receptor kinases (LecRKs) are among these receptors and are subdivided into 3 classes, C-type LecRKs (C-LecRKs), L-type LecRKs (L-LecRKs) and G-type LecRKs (G-LecRKs). While C-LecRKs are represented by one or two members in all plant species investigated and have unknown functions, L-LecRKs have been characterized in a few plant species and have been shown to play roles in plant defense against pathogens. Whereas Arabidopsis G-LecRKs have been characterized, this family of LecRKs has not been studied in tomato. RESULTS:This investigation updates the current characterization of Arabidopsis G-LecRKs and characterizes the tomato G-LecRKs, using LecRKs from the monocot rice and the basal eudicot columbine to establish a basis for comparisons between the two core eudicots. Additionally, revisiting parameters established for Arabidopsis nomenclature for LecRKs is suggested for both Arabidopsis and tomato. Moreover, using phylogenetic analysis, we show the relationship among and between members of G-LecRKs from all three eudicot plant species. Furthermore, investigating presence of motifs in G-LecRKs we identified conserved motifs among members of G-LecRKs in tomato and Arabidopsis, with five present in at least 30 of the 38 Arabidopsis members and in at least 45 of the 73 tomato members. CONCLUSIONS:This work characterized tomato G-LecRKs and added members to the currently characterized Arabidopsis G-LecRKs. Additionally, protein sequence analysis showed an expansion of this family in tomato as compared to Arabidopsis, and the existence of conserved common motifs in the two plant species as well as conserved species-specific motifs
AIE-Active Photosensitizers: Manipulation of Reactive Oxygen Species Generation and Applications in Photodynamic Therapy
Photodynamic therapy (PDT) is a non-invasive approach for tumor elimination that is attracting more and more attention due to the advantages of minimal side effects and high precision. In typical PDT, reactive oxygen species (ROS) generated from photosensitizers play the pivotal role, determining the efficiency of PDT. However, applications of traditional PDT were usually limited by the aggregation-caused quenching (ACQ) effect of the photosensitizers employed. Fortunately, photosensitizers with aggregation-induced emission (AIE-active photosensitizers) have been developed with biocompatibility, effective ROS generation, and superior absorption, bringing about great interest for applications in oncotherapy. In this review, we review the development of AIE-active photosensitizers and describe molecule and aggregation strategies for manipulating photosensitization. For the molecule strategy, we describe the approaches utilized for tuning ROS generation by attaching heavy atoms, constructing a donor-acceptor effect, introducing ionization, and modifying with activatable moieties. The aggregation strategy to boost ROS generation is reviewed for the first time, including consideration of the aggregation of photosensitizers, polymerization, and aggregation microenvironment manipulation. Moreover, based on AIE-active photosensitizers, the cutting-edge applications of PDT with NIR irradiated therapy, activatable therapy, hypoxic therapy, and synergistic treatment are also outlined
Additional file 3: of Classification and phylogenetic analyses of the Arabidopsis and tomato G-type lectin receptor kinases
Maximum likelihood tree of amino acid sequences from G-LecRK, L-LecRK intended outgroups, and C-LecRK outgroups from tomato, Arabidopsis, columbine, and rice. Bootstrap support from 1000 replicates is shown above nodes. Brackets on the right indicate intended outgroup clades. (PDF 20Â kb
Recommended from our members
A G-type lectin receptor kinase negatively regulates Arabidopsis immunity against root-knot nematodes.
Root-knot nematodes (Meloidogyne spp., RKN) are responsible for extensive crop losses worldwide. During infection, they penetrate plant roots, migrate between plant cells, and establish feeding sites, known as giant cells, near the root vasculature. Previously, we found that nematode perception and early responses in plants were similar to those of microbial pathogens and required the BRI1-ASSOCIATED KINASE1/SOMATIC EMBRYOGENESIS RECEPTOR KINASE3 (BAK1/SERK3) coreceptor in Arabidopsis (Arabidopsis thaliana) and tomato (Solanum lycopersicum). Here, we implemented a reverse genetic screen for resistance or sensitivity to RKN using Arabidopsis T-DNA alleles of genes encoding transmembrane receptor-like kinases to identify additional receptors involved in this process. This screen identified a pair of allelic mutations with enhanced resistance to RKN in a gene we named ENHANCED RESISTANCE TO NEMATODES1 (ERN1). ERN1 encodes a G-type lectin receptor kinase (G-LecRK) with a single-pass transmembrane domain. Further characterization showed that ern1 mutants displayed stronger activation of MAP kinases, elevated levels of the defense marker MYB51, and enhanced H2O2 accumulation in roots upon RKN elicitor treatments. Elevated MYB51 expression and ROS bursts were also observed in leaves of ern1 mutants upon flg22 treatment. Complementation of ern1.1 with 35S- or native promoter-driven ERN1 rescued the RKN infection and enhanced defense phenotypes. Our results indicate that ERN1 is an important negative regulator of immunity