16 research outputs found

    Opposing effects of estradiol and progesterone on the oxidative stress-induced production of chemokine and proinflammatory cytokines in murine peritoneal macrophages

    Get PDF
    In inflammatory and oxidative liver injury, virus proteins and reactive oxygen species are involved in the regulation of proinflammatory cytokine production by macrophages. This study investigated the effects of estradiol (E2) and progesterone on the unstimulated and oxidative stress-stimulated production of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, macrophage inflammatory protein (MIP)-2, and macrophage chemotactic protein (MCP)-1 by peritoneal macrophages isolated from male and female mice. E2 inhibited the cytokine production of TNF-α, IL-1β, MIP-2, and MCP-1 by the unstimulated macrophages from males and females, which was then further stimulated by progesterone. The exposure to hydrogen peroxide in the macrophages from both sexes induced the production of cytokine. The hydrogen peroxide-stimulated cytokine production was suppressed by E2 and enhanced by progesterone. The sex hormone effects on the unstimulated and stimulated macrophages were blocked by their receptor antagonists and showed no significant difference between male and female subjects. These findings suggest that E2 may play a favorable role in the course of persistent liver injury, by inhibiting proinflammatory cytokine production, which, in addition, progesterone may counteract the favorable E2 effects through their receptors

    The Characterization of Microbial Communities Response to Shallow Groundwater Contamination in Typical Piedmont Region of Taihang Mountains in the North China Plain

    No full text
    Regional-scale nitrate and organic contaminants in the shallow groundwater were investigated in the Piedmont region of Taihang Mountains (PRTM), but the information of the microbial communities is limited. However, microorganisms provide a dominated contribution to indicate and degrade the contaminants in the aquifer. Therefore, this study investigates the microbial diversity and contamination microbial indicators of groundwater samples with different contaminated types to better understand the contamination in the PRTM. Seventy-six samples were collected between two rivers in the Tang-Dasha River Basin covering 4000 km2 in the PRTM. High-throughput sequencing was employed to determine the samples’ DNA sequences. The samples were divided into four groups: background (B), nitrate contamination (N), organic contamination (O) and organic-nitrate contamination (O_N) based on the cumulative probability distribution and the Chinese groundwater standard levels of NO3−, COD and DO concentrations. Then, the microbial diversity and contamination microbial indicators were studied in the four groups. The results showed that the O group exhibited lower diversity than other groups. Bacteria detected in these four groups covered 531 families, 987 genera, and 1881 species. Taxonomic assignment analysis indicated that Rhodobacter, Vogesella, Sphingobium dominated in the O_N group, N group, and O group, and accounted for 18.05%, 17.74%, 16.45% in each group at genus level, respectively. Furthermore, these three genera were identified as contamination microbial indicators to the three types of contamination, respectively. The results provide a potential molecular microbiological method to identity contamination in shallow groundwater, and established a strong foundation for further investigation and remediation in the PRTM

    Effects of packaging materials on storage quality of peanut kernels.

    No full text
    In order to obtain optimum packaging materials for peanut kernels, the effects of four types of packaging materials on peanut storage quality (coat color, acid value, germination rate, relative damage, and prevention of aflatoxin contamination) were examined. The results showed that packaging materials had a major influence on peanut storage quality indexes. The color of the peanut seed coat packaged in the polyester/aluminum/polyamide/polyethylene (PET/AL/PA/PE) composite film bag did not change significantly during the storage period. Color deterioration was slower with polyamide/polyethylene (PA/PE) packaging materials than with polyethylene (PE) film bags and was slower in PE bags than in the woven bags. The use of PET/AL/PA/PE and PA/PE bags maintained peanut quality and freshness for more than one year and both package types resulted in better germination rates. There were significant differences between the four types of packaging materials in terms of controlling insect pests. The peanuts packaged in the highly permeable woven bags suffered serious invasion from insect pests, while both PET/AL/PA/PE and PA/PE bags effectively prevented insect infection. Peanuts stored in PET/AL/PA/PE and PA/PE bags were also better at preventing and controlling aflatoxin contamination

    Identification of key genes with prognostic value in gastric cancer by bioinformatics analysis.

    No full text
    Background: Gastric cancer (GC) is a digestive system tumor with high morbidity and mortality. It is urgently required to identify genes to elucidate the underlying molecular mechanisms. The aim of this study is to identify the key genes which may affect the prognosis of GC patients and be a therapeutic strategy for GC patients by bioinformatic analysis. Methods: The significant prognostic differentially expressed genes (DEGs) were screened out from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) datasets. The protein-protein interaction (PPI) network was established by STRING and screening key genes by MCODE and CytoNCA plug-ins in Cytoscape. Functional enrichment analysis, construction of a prognostic risk model, and nomograms verify key genes as potential therapeutic targets. Results: In total, 997 genes and 805 genes were related to the prognosis of GC in the GSE84437 and TCGA datasets, respectively. We define the 128 genes shared by the two datasets as prognostic DEGs (P-DEGs). Then, the first four genes (MYLK, MYL9, LUM, and CAV1) with great node importance in the PPI network of P-DEGs were identified as key genes. Independent prognostic risk analysis found that patients with high key gene expression had a poor prognosis, excluding their age, gender, and TNM stage. GO and KEGG enrichment analyses showed that key genes may exert influence through the PI3K-Akt pathway, in which extracellular matrix organization and focal adhesion may play important roles in key genes influencing the prognosis of GC patients. Conclusion: We found that MYLK, MYL9, LUM, and CAV1 are potential and reliable prognostic key genes that affect the invasion and migration of gastric cancer

    High-throughput identification of heavy metal binding proteins from the byssus of chinese green mussel (Perna viridis) by combination of transcriptome and proteome sequencing.

    No full text
    The Byssus, which is derived from the foot gland of mussels, has been proved to bind heavy metals effectively, but few studies have focused on the molecular mechanisms behind the accumulation of heavy metals by the byssus. In this study, we integrated high-throughput transcriptome and proteome sequencing to construct a comprehensive protein database for the byssus of Chinese green mussel (Perna viridis), aiming at providing novel insights into the molecular mechanisms by which the byssus binds to heavy metals. Illumina transcriptome sequencing generated a total of 55,670,668 reads. After filtration, we obtained 53,047,718 clean reads and subjected them to de novo assembly using Trinity software. Finally, we annotated 73,264 unigenes and predicted a total of 34,298 protein coding sequences. Moreover, byssal samples were analyzed by proteome sequencing, with the translated protein database from the foot transcriptome as the reference for further prediction of byssal proteins. We eventually determined 187 protein sequences in the byssus, of which 181 proteins are reported for the first time. Interestingly, we observed that many of these byssal proteins are rich in histidine or cysteine residues, which may contribute to the byssal accumulation of heavy metals. Finally, we picked one representative protein, Pvfp-5-1, for recombinant protein synthesis and experimental verification of its efficient binding to cadmium (Cd2+) ions

    Identification of an Immune-Related Prognostic Risk Model in Glioblastoma.

    No full text
    Background: Glioblastoma (GBM) is the most common and malignant type of brain tumor. A large number of studies have shown that the immunotherapy of tumors is effective, but the immunotherapy effect of GBM is not poor. Thus, further research on the immune-related hub genes of GBM is extremely important. Methods: The GBM highly correlated gene clusters were screened out by differential expression, mutation analysis, and weighted gene co-expression network analysis (WGCNA). Least absolute shrinkage and selection operator (LASSO) and proportional hazards model (COX) regressions were implemented to construct prognostic risk models. Survival, receiver operating characteristic (ROC) curve, and compound difference analyses of tumor mutation burden were used to further verify the prognostic risk model. Then, we predicted GBM patient responses to immunotherapy using the ESTIMATE algorithm, GSEA, and Tumor Immune Dysfunction and Exclusion (TIDE) algorithm. Results: A total of 834 immune-related differentially expressed genes (DEGs) were identified. The five hub genes (STAT3, SEMA4F, GREM2, MDK, and SREBF1) were identified as the prognostic risk model (PRM) screened out by WGCNA and LASSO analysis of DEGs. In addition, the PRM has a significant positive correlation with immune cell infiltration of the tumor microenvironment (TME) and expression of critical immune checkpoints, indicating that the poor prognosis of patients is due to TIDE. Conclusion: We constructed the PRM composed of five hub genes, which provided a new strategy for developing tumor immunotherapy

    Effects of packaging treatments on acid values in peanuts during 24 months of storage.

    No full text
    <p>Acid values of the peanuts varied from month to month. Recorded levels of peanut acid values were highly variable from one time point to the next. The woven and PE bags showed a rapid increase, and the PA/PE and PET/AL/PA/PE bags showed a slow increase in acid values during the 24 months of storage.</p

    Effects of packaging treatments on relative damage to peanuts during 24 months of storage.

    No full text
    <p>Recorded levels of peanut damage were highly variable from one time point to the next in the woven and PE bags, which had an observed grain damaged of 5%, and the relative damage to peanuts in the PA/PE and PET/AL/PA/PE bags showed little increase during the 24 months of storage.</p

    Effects of packaging treatments on parameters of peanuts during 24 months of storage.

    No full text
    <p>Storing peanuts in bags of different materials had a significant effect on seed coat color over time. The seed coat color of peanuts stored in PET/AL/PA/PE bags remained relatively stable during the 24 month study period; however, the samples packaged in wove, PE, and PA/PE pouches showed changes in all three color parameters (L*, a*, and b*) during storage. The L values of peanuts stored in woven bags decreased by 44.6%, and the a and b values increased by 97.6 and 128.0%, respectively, after 24 months. The L value of peanuts stored in PE decreased by 25.0% and the a and b values increased by 60.6% and 73.2%, respectively. The changes of Lab values for peanuts stored in PET/AL/PA/PE bags, in contrast, were relatively small after 24 months; the L value decreased only 10.5%, the a value increased 23.0%, and the b value increased 28.3%.</p
    corecore