423 research outputs found

    The effect of repeated freeze-thaw cycles on the meat quality of rabbit

    Full text link
    [EN] We investigated the effect of repeated freeze-thaw cycles on the quality of rabbit meat. Twenty-five Hyla rabbits were slaughtered using standard commercial procedures. A freeze-thaw procedure—i.e., seven days frozen at –18°C followed by thawing at 4°C for 12h— was repeated 5 times, and 9 Longissimus thoracis et lumborum muscles were randomly selected at pre-set cycles (0, 1, 2, 3, and 5). The Longissimus lumborum muscles were used to determine meat quality parameters, while the Longissimus thoracis muscles were used for chemical analysis. During the repeated freeze-thaw process, muscle pH, redness, hardness, and water holding capacity gradually decreased, whereas meat lightness and yellowness gradually increased. The amount of total volatile basic nitrogen significantly increased (P<0.05) and exceeded the threshold value for frozen meat after 5 repeated freeze-thaw cycles. The metmyoglobin proportion, thiobarbituric acid-reactive substances (TBARS) and protein carbonyl content in rabbit meat samples increased with a higher number of freeze-thaw cycles (P<0.05), and the proportions of these compounds were positively correlated. During the repeated freeze-thaw process, extractable haeme iron levels significantly decreased (P<0.05), and non-haeme iron levels markedly increased (P<0.05). An sodium dodecyl sulfate polyacrylamide gel electrophoresis analysis indicated that the degradation of both water- and salt-soluble proteins was more prevalent in samples subjected to higher numbers of freeze-thaw cycles. Additionally, a principal component analysis identified good correlations between physicochemical properties (TBARS, protein carbonyl levels and metmyoglobin content) and quality parameters (thawing loss, redness, lightness and hardness). Taken together, we conclude that the repeated freeze-thaw process can strongly affect rabbit meat quality as well as its physicochemical properties.The authors gratefully acknowledge financial support from the General Program of National Natural Science Foundation of China (31671787), the National Rabbit Industry Technology System Programme (Grant No. CARS-43-E-1), and the Chongqing Herbivorous Livestock Industry Technology System (Y201706).Wang, Z.; He, Z.; Gan, X.; Li, H. (2018). The effect of repeated freeze-thaw cycles on the meat quality of rabbit. World Rabbit Science. 26(2):165-177. https://doi.org/10.4995/wrs.2018.8616SWORD165177262Ali S., Rajput N., Li C.B., Zhang W., Zhou G.H. 2016. Effect of freeze-thaw cycles on lipid oxidation and myowater in broiler chickens. Revista Brasileira de Ciência Avícola, 18: 35-40.https://doi.org/10.1590/1516-635x1801035-040Ali S., Zhang W., Rajput N., Khan M.A., Li C.B., Zhou G.H. 2015. Effect of multiple freeze-thaw cycles on the quality of chicken breast meat. Food Chem., 173: 808-814. https://doi.org/10.1016/j.foodchem.2014.09.095Alonso V., Muela E., Tenas J., Calanche J.B., Roncalés P., Beltrán J.A. 2016. Changes in physicochemical properties and fatty acid composition of pork following long-term frozen storage. Eur. Food Res. Technol., 242: 2119-2127. https://doi.org/10.1007/s00217-016-2708-yBarbin D.F., Sun D.W., Su C. 2013. NIR hyperspectral imaging as non-destructive evaluation tool for the recognition of fresh and frozen-thawed porcine longissimus dorsi muscles. Innov. Food Sci. Emerg., 18: 226-236. https://doi.org/10.1016/j.ifset.2012.12.011Benjakul S., Bauer F. 2001. Biochemical and physicochemical changes in catfish (Silurus glanis Linne) muscle as influenced by different freeze-thaw cycles. Food Chem., 72: 207-217.https://doi.org/10.1016/S0308-8146(00)00222-3Berardo A., Claeys E., Vossen E., Leroy F., De Smet S. 2015. Protein oxidation affects proteolysis in a meat model system. Meat Sci., 10: 78-84. https://doi.org/10.1016/j.meatsci.2015.04.002Bianchi M., Petracci M., Cavani C. 2006. Effects of dietary inclusion of dehydrated lucerne and whole linseed on rabbit meat quality. World Rabbit Sci., 14: 247-258. https://doi.org/10.4995/wrs.2006.562Cai J., Chen Q., Wan X., Zhao J. 2011. Determination of total volatile basic nitrogen (TVB-N) content and Warner-Bratzler shear force (WBSF) in pork using Fourier transform near infrared (FT-NIR) spectroscopy. Food Chem., 126: 1354-1360. https://doi.org/10.1016/j.foodchem.2010.11.098Chen Q., Zhang Y., Zhao J., Hui Z. 2013. Nondestructive measurement of total volatile basic nitrogen (TVB-N) content in salted pork in jelly using a hyperspectral imaging technique combined with efficient hypercube processing algorithms. Anal. Methods-UK, 5: 6382-6388. https://doi.org/10.1039/C3AY40436FChen T.H., Zhu Y.P., Han M.Y., Wang P., Wei R., Xu X.L., Zhou G.H. 2017. Classification of chicken muscle with different freeze-thaw cycles using impedance and physicochemical properties. J. Food Eng., 196: 94-100. https://doi.org/10.1016/j.jfoodeng.2016.10.003Dai Y., Miao J., Yuan S.Z., Liu Y., Li X.M., Dai R.T. 2013. Colour and sarcoplasmic protein evaluation of pork following water bath and ohmic cooking. Meat Sci., 93: 898-905. https://doi.org/10.1016/j.meatsci.2012.11.044Dai Y., Lu Y., Wu W., Lu X.M., Han Z.P., Liu Y., Li X.M., Dai R.T. 2014. Changes in oxidation, color and texture deteriorations during refrigerated storage of ohmically and water bathcooked pork meat. Innov. Food Sci. Emerg., 26: 341-346. https://doi.org/10.1016/j.ifset.2014.06.009Dalle Zotte A., Szendrő Z. 2011. The role of rabbit meat as functional food. Meat Sci., 88: 319-331. https://doi.org/10.1016/j.meatsci.2011.02.017Dalle Zotte A., Cullere M., Rémignon H., Alberghini L., Paci G. 2016. Meat physical quality and muscle fiber properties of rabbit meat as affected by the sire breed, season, parity order and gender in an organic production system. World Rabbit Sci., 24: 145-154. https://doi.org/10.4995/wrs.2016.4300Dalvi-Isfahan M., Hamdami N., Le-Bail A. 2016. Effect of freezing under electrostatic field on the quality of lamb meat. Innov. Food Sci. Emerg., 37: 68-73. https://doi.org/10.1016/j.ifset.2016.07.028Duun A.S., Rustad T. 2008. Quality of superchilled vacuum packed Atlantic salmon (Salmo salar) fillets stored at -1.4 and -3.6°C. Food Chem., 106: 122-131. https://doi.org/10.1016/j.foodchem.2007.05.051Farouk M.M., Wieliczko K.J., Merts I. 2004. Ultra-fast freezing and low storage temperatures are not necessary to maintain the functional properties of manufacturing beef. Meat Sci., 66: 171-179.https://doi.org/10.1016/S0309-1740(03)00081-0Hazell T. 1982. Iron and zinc compounds in the muscle meats of beef, lamb, pork and chicken. J. Sci. Food Agr., 33: 1049-1056. https://doi.org/10.1002/jsfa.2740331017Huang L., Liu Q., Xia X., Kong B., Xiong Y.L. 2015. Oxidative changes and weakened gelling ability of salt-extracted protein are responsible for textural losses in dumpling meat fillings during frozen storage. Food Chem., 185: 459-469. https://doi.org/10.1016/j.foodchem.2015.04.025Isleroglu H., Kemerli T., Kaymak-Ertekin F. 2015. Effect of steam-assisted hybrid cooking on textural quality characteristics, cooking loss, and free moisture content of beef. Int. J. Food Prop., 18: 403-414. https://doi.org/10.1080/10942912.2013.833219Karpińska-Tymoszczyk M. 2014. The effect of antioxidants, packaging type and frozen storage time on the quality of cooked turkey meatballs. Food Chem., 148: 276-283. https://doi.org/10.1016/j.foodchem.2013.10.054Kim H.W., Miller D.K., Yan F., Wang W., Cheng H.W., Kim Y.H.B. 2017. Probiotic supplementation and fast freezing to improve quality attributes and oxidation stability of frozen chicken breast muscle. LWT-Food Sci. Technol., 75: 34-41. https://doi.org/10.1016/j.lwt.2016.08.035Jeong J.Y., Kim G.D., Yang H.S., Joo S.T. 2011. Effect of freezethaw cycles on physicochemical properties and color stability of beef semimembranosus muscle. Food Res. Int., 44: 3222-3228. https://doi.org/10.1016/j.foodres.2011.08.023Lan Y., Shang Y., Song Y., Dong Q. 2016. Changes in the quality of superchilled rabbit meat stored at different temperatures. Meat Sci., 117: 173-181. https://doi.org/10.1016/j.meatsci.2016.02.017Leygonie C., Britz T.J., Hoffman L.C. 2012. Impact of freezing and thawing on the quality of meat. Meat Sci., 91: 93-98. https://doi.org/10.1016/j.meatsci.2012.01.013Maqsood S., Benjakul S. 2010. Preventive effect of tannic acid in combination with modified atmospheric packaging on the quality losses of the refrigerated ground beef. Food Control, 21: 1282-1290. https://doi.org/10.1016/j.foodcont.2010.02.018Maqsood S., Benjakul S., Balange A.K. 2012. Effect of tannic acid and kiam wood extract on lipid oxidation and textural properties of fish emulsion sausages during refrigerated storage. Food Chem., 130: 408-416. https://doi.org/10.1016/j.foodchem.2011.07.065Marino R., Albenzio M., Della Malva A., Caroprese M., Santillo A., Sevi A. 2014. Changes in meat quality traits and sarcoplasmic proteins during aging in three different cattle breeds. Meat Sci., 98: 178-186. https://doi.org/10.1016/j.meatsci.2014.05.024Muela E., Monge P., Sañudo C., Campo M.M., Beltrán J.A. 2015. Meat quality of lamb frozen stored up to 21months: Instrumental analyses on thawed meat during display. Meat Sci., 102: 35-40. https://doi.org/10.1016/j.meatsci.2014.12.003Oueslati K., de La Pomélie D., Santé-Lhoutellier V., Gatellier P. 2016. Impact of the Fenton process in meat digestion as assessed using an in vitro gastro-intestinal model. Food Chem., 209: 43-49. https://doi.org/10.1016/j.foodchem.2016.04.041Qi J., Li C., Chen, Y., Gao F., Xu X., Zhou G. 2012. Changes in meat quality of ovine longissimus dorsi muscle in response to repeated freeze and thaw. Meat Sci., 92: 619-626. https://doi.org/10.1016/j.meatsci.2012.06.009Rahman M.H., Hossain M.M., Rahman S.M.E., Amin M.R., Oh D.H. 2015. Evaluation of physicochemical deterioration and lipid oxidation of beef muscle affected by freezethaw cycles. Korean J. Food Sci. An., 35: 772-782. https://doi.org/10.5851/kosfa.2015.35.6.772Soglia F., Petracci M., Ertbjerg P. 2016. Novel DNPH-based method for determination of protein carbonylation in muscle and meat. Food Chem., 197: 670-675. https://doi.org/10.1016/j.foodchem.2015.11.038Suman S.P., Joseph P. 2013. Myoglobin chemistry and meat color. Ann. Rev. Food Sci. Tech., 4: 79-99.https://doi.org/10.1146/annurev-food-030212-182623Tang J., Faustman C., Hoagland T.A. 2004. Krzywicki revisited: Equations for spectrophotometric determination of myoglobin redox forms in aqueous meat extracts. J. Food Sci., 69: 717-720. https://doi.org/10.1111/j.1365-2621.2004.tb09922.xThanonkaew A., Benjakul S., Visessanguan W., Decker E.A. 2006. The effect of metal ions on lipid oxidation, colour and physicochemical properties of cuttlefish (Sepia pharaonis) subjected to multiple freeze-thaw cycles. Food Chem., 95: 591-599. https://doi.org/10.1016/j.foodchem.2005.01.040Turhan S., Ustun N.S., Bank I. 2006. Effect of freeze-thaw cycles on total and haeme iron contents of bonito (Sarda sarda) and bluefish (Pomatomus saltator) fillets. J. Food Compos. Anal., 19: 384-387. https://doi.org/10.1016/j.jfca.2004.10.005Utrera M., Morcuende D., Estévez M. 2014. Temperature of frozen storage affects the nature and consequences of protein oxidation in beef patties. Meat Sci., 96: 1250-1257. https://doi.org/10.1016/j.meatsci.2013.10.032Vieira C., Diaz M. T., Martínez B., García-Cachán M.D. 2009. Effect of frozen storage conditions (temperature and length of storage) on microbiological and sensory quality of rustic crossbred beef at different states of ageing. Meat Sci., 83: 398-404. https://doi.org/10.1016/j.meatsci.2009.06.013Wang H., Luo Y., Shi C., Shen H. 2015. Effect of different thawing methods and multiple freeze-thaw cycles on the quality of common carp (Cyprinus carpio). J. Aquat. Food Prod. T., 24: 153-162. https://doi.org/10.1080/10498850.2013.763884Wongwichian C., Klomklao S., Panpipat W., Benjakul S., Chaijan M. 2015. Interrelationship between myoglobin and lipid oxidations in oxeye scad (Selar boops) muscle during iced storage. Food Chem., 174: 279-285. https://doi.org/10.1016/j.foodchem.2014.11.071Xia X., Kong B., Liu Q., Liu J. 2009. Physicochemical change and protein oxidation in porcine longissimus dorsi as influenced by different freeze-thaw cycles. Meat Sci., 83: 239-245. https://doi.org/10.1016/j.meatsci.2009.05.003Xia X., Kong B., Xiong Y., Ren Y. 2010. Decreased gelling and emulsifying properties of myofibrillar protein from repeatedly frozen-thawed porcine longissimus muscle are due to protein denaturation and susceptibility to aggregation. Meat Sci., 85: 481-486. https://doi.org/10.1016/j.meatsci.2010.02.019Xie Y., He Z., Lv J., Zhang E., Li H. 2016. Identification the key odorants in different parts of Hyla rabbit meat via solid phase microextraction using gas chromatography mass spectrometry. Korean J. Food Sci. An., 36: 719-728. https://doi.org/10.5851/kosfa.2016.36.6.719Yang Q., Sun D.W., Cheng W. 2017. Development of simplified models for nondestructive hyperspectral imaging monitoring of TVB-N contents in cured meat during drying process. J. Food Eng., 192: 53-60. https://doi.org/10.1016/j.jfoodeng.2016.07.01

    Neutrosophic soft sets forecasting model for multi-attribute time series

    Get PDF
    Traditional time series forecasting models mainly assume a clear and definite functional relationship between historical values and current/future values of a dataset. In this paper, we extended current model by generating multi-attribute forecasting rules based on consideration of combining multiple related variables. In this model, neutrosophic soft sets (NSSs) are employed to represent historical statues of several closely related attributes in stock market such as volumes, stock market index and daily amplitudes

    Analytical and computational method of structure-borne noise and shock resistance of gear system

    Get PDF
    An approach to synthetically evaluate structure-borne noise and shock resistance of gear system is proposed. Firstly, dynamic finite element mesh model of gear system which includes shafts, bearings, gears and housing is established by using spring element, tetrahedral element and hexahedral element. Then dynamic finite element analysis model of gear system is gotten by loading the dynamic excitation force which can be calculated via the computation program of gear pair stiffness excitation, error excitation and impact excitation onto the tooth meshing line as boundary conditions. And the dynamic response of gear system is analyzed by using modal superposition method, and the vibration response experimental study of gear system is performed on the gearbox test-bed. The comparative analysis shows that computational results of the vibration response are in good agreement with the data of experiment tests and it could verify the rationality of dynamic finite element mesh model of gear system. Finally, taking acceleration shock excitation load into account on the basis of the dynamic finite element mesh model, the impact response of gear system is solved, and the shock resistance is analyzed based on the strength decision criterion

    Goal-Conditioned Reinforcement Learning with Disentanglement-based Reachability Planning

    Full text link
    Goal-Conditioned Reinforcement Learning (GCRL) can enable agents to spontaneously set diverse goals to learn a set of skills. Despite the excellent works proposed in various fields, reaching distant goals in temporally extended tasks remains a challenge for GCRL. Current works tackled this problem by leveraging planning algorithms to plan intermediate subgoals to augment GCRL. Their methods need two crucial requirements: (i) a state representation space to search valid subgoals, and (ii) a distance function to measure the reachability of subgoals. However, they struggle to scale to high-dimensional state space due to their non-compact representations. Moreover, they cannot collect high-quality training data through standard GC policies, which results in an inaccurate distance function. Both affect the efficiency and performance of planning and policy learning. In the paper, we propose a goal-conditioned RL algorithm combined with Disentanglement-based Reachability Planning (REPlan) to solve temporally extended tasks. In REPlan, a Disentangled Representation Module (DRM) is proposed to learn compact representations which disentangle robot poses and object positions from high-dimensional observations in a self-supervised manner. A simple REachability discrimination Module (REM) is also designed to determine the temporal distance of subgoals. Moreover, REM computes intrinsic bonuses to encourage the collection of novel states for training. We evaluate our REPlan in three vision-based simulation tasks and one real-world task. The experiments demonstrate that our REPlan significantly outperforms the prior state-of-the-art methods in solving temporally extended tasks.Comment: Accepted by 2023 RAL with ICR

    Mutual Information-Based Integrated Sensing and Communications: A WMMSE Framework

    Full text link
    In this letter, a weighted minimum mean square error (WMMSE) empowered integrated sensing and communication (ISAC) system is investigated. One transmitting base station and one receiving wireless access point are considered to serve multiple users a sensing target. Based on the theory of mutual-information (MI), communication MI and sensing MI rate are utilized as the performance metrics under the presence of clutters. In particular, we propose an novel MI-based WMMSE-ISAC method by developing a unique transceiver design mechanism to maximize the weighted sensing and communication sum-rate of this system. Such a maximization process is achieved by utilizing the classical method -- WMMSE, aiming to better manage the effect of sensing clutters and the interference among users. Numerical results show the effectiveness of our proposed method, and the performance trade-off between sensing and communication is also validated

    Wound Segmentation with Dynamic Illumination Correction and Dual-view Semantic Fusion

    Full text link
    Wound image segmentation is a critical component for the clinical diagnosis and in-time treatment of wounds. Recently, deep learning has become the mainstream methodology for wound image segmentation. However, the pre-processing of the wound image, such as the illumination correction, is required before the training phase as the performance can be greatly improved. The correction procedure and the training of deep models are independent of each other, which leads to sub-optimal segmentation performance as the fixed illumination correction may not be suitable for all images. To address aforementioned issues, an end-to-end dual-view segmentation approach was proposed in this paper, by incorporating a learn-able illumination correction module into the deep segmentation models. The parameters of the module can be learned and updated during the training stage automatically, while the dual-view fusion can fully employ the features from both the raw images and the enhanced ones. To demonstrate the effectiveness and robustness of the proposed framework, the extensive experiments are conducted on the benchmark datasets. The encouraging results suggest that our framework can significantly improve the segmentation performance, compared to the state-of-the-art methods

    CRB Minimization for RIS-aided mmWave Integrated Sensing and Communications

    Full text link
    In this paper, reconfigurable intelligent surface (RIS) is employed in a millimeter wave (mmWave) integrated sensing and communications (ISAC) system. To alleviate the multi-hop attenuation, the semi-self sensing RIS approach is adopted, wherein sensors are configured at the RIS to receive the radar echo signal. Focusing on the estimation accuracy, the Cramer-Rao bound (CRB) for estimating the direction-of-the-angles is derived as the metric for sensing performance. A joint optimization problem on hybrid beamforming and RIS phaseshifts is proposed to minimize the CRB, while maintaining satisfactory communication performance evaluated by the achievable data rate. The CRB minimization problem is first transformed as a more tractable form based on Fisher information matrix (FIM). To solve the complex non-convex problem, a double layer loop algorithm is proposed based on penalty concave-convex procedure (penalty-CCCP) and block coordinate descent (BCD) method with two sub-problems. Successive convex approximation (SCA) algorithm and second order cone (SOC) constraints are employed to tackle the non-convexity in the hybrid beamforming optimization. To optimize the unit modulus constrained analog beamforming and phase shifts, manifold optimization (MO) is adopted. Finally, the numerical results verify the effectiveness of the proposed CRB minimization algorithm, and show the performance improvement compared with other baselines. Additionally, the proposed hybrid beamforming algorithm can achieve approximately 96% of the sensing performance exhibited by the full digital approach within only a limited number of radio frequency (RF) chains
    • …
    corecore