136 research outputs found

    Dynamic Characteristics and Seismic Response Analysis of a Long-Span Steel-Box Basket-Handle Railway Arch Bridge

    Get PDF
    The inside oblique angle between the vertical plane and the arch rib has been shown to be one of the main factors influencing dynamic properties of long-span steel-box basket-handle arch bridges. Details related to the extent, that the inside oblique angle influenced the dynamic characteristics and the seismic response of the arch bridge under the combined longitudinal and vertical seismic excitation and under the combined lateral and vertical seismic excitation, were reported herein. Four oblique angles (0°, 3°, 4.8°, and 6°) were selected based on the arch ribs height and bridge deck width. Findings suggested that a larger inside oblique angle increased the structural stiffness and thus the part internal forces when subjected to seismic excitation. These findings also showed that, when similar structures were designed and seismic considerations were warranted, a suitable inside oblique angle to mitigate dynamic effects should be selected only using a comprehensive analysis. At the same time, traveling wave effect analysis indicated that it couldn’t be ignored when calculating the seismic response of long-span steel-box basket-handle arch bridges

    Dynamic characteristics and seismic response analysis of a long-span steel-box basket-handle railway arch bridge

    Get PDF
    The inside oblique angle between the vertical plane and the arch rib has been shown to be one of the main factors influencing dynamic properties of long-span steel-box basket-handle arch bridges. Details related to the extent, that the inside oblique angle influenced the dynamic characteristics and the seismic response of the arch bridge under the combined longitudinal and vertical seismic excitation and under the combined lateral and vertical seismic excitation, were reported herein. Four oblique angles (0°, 3°, 4.8° and 6°) were selected based on the arch ribs height and bridge deck width. Findings suggested that a larger inside oblique angle increased the structural stiffness and thus the part internal forces when subjected to seismic excitation. These findings also showed that, when similar structures were designed and seismic considerations were warranted, a suitable inside oblique angle to mitigate dynamic effects should be selected only using a comprehensive analysis. At the same time, traveling wave effect analysis indicated that it couldn’t be ignored when calculating the seismic response of long-span steel-box basket-handle arch bridges

    Chitinase-3 like-protein-1, matrix metalloproteinase -9 and positive intracranial arterial remodelling

    Get PDF
    IntroductionPositive intracranial arterial remodelling is a dilated lesion of the large intracranial vessels; however, its pathogenesis is currently unknown. Some studies have identified chitinase-3 like-protein-1 (YKL-40) and matrix metalloproteinase (MMP)-9 as circulating inflammatory factors involved in positive vascular remodelling. Herein, we aimed to investigate the relationship between changes in serum YKL-40 and MMP-9 levels and positive intracranial arterial remodelling in patients with cerebral small vessel disease (CSVD).MethodsA total of 110 patients with CSVD were selected. Patients with brain arterial remodelling (BAR) scores >1 times the standard deviation were defined as the positive intracranial artery remodelling group (n = 21 cases), and those with BAR scores ≤1 times the standard deviation were defined as the non-positive intracranial artery remodelling group (n = 89 cases). Serum YKL-40 and MMP-9 levels were measured using an enzyme-linked immunosorbent assay kit. Factors influencing positive intracranial artery remodelling using binary logistic regression analysis and predictive value of YKL-40 and MMP-9 for positive intracranial arterial remodelling in patients with CSVD were assessed by a subject receiver operating characteristic curve.ResultsStatistically significant differences in serum YKL-40 and MMP-9 levels were observed between the positive and non-positive remodelling groups (p < 0.05). The integrated indicator (OR = 9.410, 95% CI: 3.156 ~ 28.054, P<0.01) of YKL-40 and MMP-9 levels were independent risk factors for positive intracranial arterial remodelling. The integrated indicator (OR = 3.763, 95% CI: 1.884 ~ 7.517, p < 0.01) of YKL-40 and MMP-9 were independent risk factors for positive arterial remodelling in posterior circulation, but were not significantly associated with positive arterial remodelling in anterior circulation (p > 0.05). The area under the curve for YKL-40 and MMP-9 diagnostic positive remodelling was 0.778 (95% CI: 0.692–0.865, p < 0.01) and 0.736 (95% CI: 0.636–0.837, p < 0.01), respectively.DiscussionElevated serum YKL-40 and MMP-9 levels are independent risk factors for positive intracranial arterial remodelling in patients with CSVD and may predict the presence of positive intracranial arterial remodelling, providing new ideas for the mechanism of its occurrence and development and the direction of treatment

    The Role of Circulating Tight Junction Proteins in Evaluating Blood Brain Barrier Disruption following Intracranial Hemorrhage

    Get PDF
    Brain injury after intracranial hemorrhage (ICH) results in significant morbidity and mortality. Blood brain barrier (BBB) disruption is a hallmark of ICH-induced brain injury; however, data mirroring BBB disruption in human ICH are scarce. The aim of this study was to assess the significance of circulating biomarkers in evaluating BBB disruption after ICH. Twenty-two patients with ICH were recruited in this study. Concentrations of the tight junction proteins (TJs) Claudin-5 (CLDN5), Occludin (OCLN), and zonula occludens 1 (ZO-1) and vascular endothelial growth factor (VEGF) and matrix metalloproteinase-9 (MMP-9) were measured by using enzyme-linked immunosorbent assay in serum and cerebrospinal fluid (CSF) samples obtained from patients with ICH. The white blood cell (WBC) count in blood and CSF, albumin (ALB) levels in the CSF (ALB CSF ), and the BBB ratio were significantly higher in the ICH than in controls ( < 0.05). Significantly higher levels of CLDN5, OCLN, ZO-1, MMP-9, and VEGF in CSF were observed in the ICH group; these biomarkers were also positively associated with BBB ratio ( < 0.05). Our data revealed that circulating TJs could be considered the potential biomarkers reflecting the integrity of the BBB in ICH

    A Synthetic Algorithm for Tracking a Moving Object in a Multiple-Dynamic Obstacles Environment Based on Kinematically Planar Redundant Manipulators

    Get PDF
    This paper presents a synthetic algorithm for tracking a moving object in a multiple-dynamic obstacles environment based on kinematically planar manipulators. By observing the motions of the object and obstacles, Spline filter associated with polynomial fitting is utilized to predict their moving paths for a period of time in the future. Several feasible paths for the manipulator in Cartesian space can be planned according to the predicted moving paths and the defined feasibility criterion. The shortest one among these feasible paths is selected as the optimized path. Then the real-time path along the optimized path is planned for the manipulator to track the moving object in real-time. To improve the convergence rate of tracking, a virtual controller based on PD controller is designed to adaptively adjust the real-time path. In the process of tracking, the null space of inverse kinematic and the local rotation coordinate method (LRCM) are utilized for the arms and the end-effector to avoid obstacles, respectively. Finally, the moving object in a multiple-dynamic obstacles environment is thus tracked via real-time updating the joint angles of manipulator according to the iterative method. Simulation results show that the proposed algorithm is feasible to track a moving object in a multiple-dynamic obstacles environment

    GJB2 mutation spectrum in 2063 Chinese patients with nonsyndromic hearing impairment

    Get PDF
    Background: Mutations in GJB2 are the most common molecular defects responsible for autosomal recessive nonsyndromic hearing impairment (NSHI). The mutation spectra of this gene vary among different ethnic groups. Methods: In order to understand the spectrum and frequency of GJB2 mutations in the Chinese population, the coding region of the GJB2 gene from 2063 unrelated patients with NSHI was PCR amplified and sequenced. Results: A total of 23 pathogenic mutations were identified. Among them, five (p.W3X, c.99delT, c.155_c.158delTCTG, c.512_c.513insAACG, and p.Y152X) are novel. Three hundred and seven patients carry two confirmed pathogenic mutations, including 178 homozygotes and 129 compound heterozygotes. One hundred twenty five patients carry only one mutant allele. Thus, GJB2 mutations account for 17.9% of the mutant alleles in 2063 NSHI patients. Overall, 92.6% (684/739) of the pathogenic mutations are frame-shift truncation or nonsense mutations. The four prevalent mutations; c.235delC, c.299_c.300delAT, c.176_c.191del16, and c.35delG, account for 88.0% of all mutantalleles identified. The frequency of GJB2 mutations (alleles) varies from 4% to 30.4% among different regions of China. It also varies among different sub-ethnic groups. Conclusion: In some regions of China, testing of the three most common mutations can identify at least one GJB2 mutant allele in all patients. In other regions such as Tibet, the three most common mutations account for only 16% the GJB2 mutant alleles. Thus, in this region, sequencing of GJB2 would be recommended. In addition, the etiology of more than 80% of the mutant alleles for NSHI in China remains to be identified. Analysis of other NSHI related genes will be necessary

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data
    • …
    corecore