105 research outputs found

    Reconstruction of primordial tensor power spectra from B-mode polarization of the cosmic microwave background

    Full text link
    Given observations of B-mode polarization power spectrum of the cosmic microwave background (CMB), we can reconstruct power spectra of primordial tensor modes from the early Universe without assuming their functional form such as a power-law spectrum. Shape of the reconstructed spectra can then be used to probe the origin of tensor modes in a model-independent manner. We use the Fisher matrix to calculate the covariance matrix of tensor power spectra reconstructed in bins. We find that the power spectra are best reconstructed at wavenumbers in the vicinity of k≈6×10−4k\approx 6\times 10^{-4} and 5×10−3 Mpc−15\times 10^{-3}~{\rm Mpc}^{-1}, which correspond to the "reionization bump" at ℓ≲6\ell\lesssim 6 and "recombination bump" at ℓ≈80\ell\approx 80 of the CMB B-mode power spectrum, respectively. The error bar between these two wavenumbers is larger because of lack of the signal between the reionization and recombination bumps. The error bars increase sharply towards smaller (larger) wavenumbers because of the cosmic variance (CMB lensing and instrumental noise). To demonstrate utility of the reconstructed power spectra we investigate whether we can distinguish between various sources of tensor modes including those from the vacuum metric fluctuation and SU(2) gauge fields during single-field slow-roll inflation, open inflation and massive gravity inflation. The results depend on the model parameters, but we find that future CMB experiments are sensitive to differences in these models. We make our calculation tool available on-line.Comment: 9 pages, 2 figures, 4 tables; accepted version in Phys. Rev.

    Finding the chiral gravitational wave background of an axion-SU(2) inflationary model using CMB observations and laser interferometers

    Full text link
    A detection of B-mode polarization of the Cosmic Microwave Background (CMB) anisotropies would confirm the presence of a primordial gravitational wave background (GWB). In the inflation paradigm this would be an unprecedented probe of the energy scale of inflation as it is directly proportional to the power spectrum of the GWB. However, similar tensor perturbations can be produced by the matter fields present during inflation, breaking this simple relationship. It is therefore important to be able to distinguish between different generation mechanisms of the GWB. In this paper, we analyse the detectability of a new axion-SU(2) gauge field model using its chiral, scale-dependent tensor spectrum. We forecast the detectability of the resulting CMB TB and EB cross-correlations by the LiteBIRD satellite, considering the effects of residual foregrounds, gravitational lensing, and for the first time assess the ability of such an experiment to jointly detect primordial TB and EB spectra and self-calibrate its polarimeter. We find that LiteBIRD will be able to detect the chiral signal for r∗>0.03r_*>0.03 with r∗r_* denoting the tensor-to-scalar ratio at the peak scale, and that the maximum signal-to-noise for r∗<0.07r_*<0.07 is ∼2\sim 2. We go on to consider an advanced stage of a LISA-like mission, and find that such experiments would complement CMB observations by providing sensitivity to GWB chirality on scales inaccessible to the CMB. We conclude that in order to use the CMB to distinguish this model from a conventional vacuum fluctuation model two-point statistics provide some power, but to achieve high statistical significance we would require higher order statistics which take advantage of the model's non-Gaussianity. On the other hand, in the case of a spectrum peaked at very small scales, inaccessible to the CMB, a highly significant detection could be made using space-based laser interferometers.Comment: 24 pages, 12 figures, accepted by PhysRev

    Zero Casimir Force in Axion Electrodynamics and New Force Search

    Full text link
    We point out that there is a stable configuration of metal plates where the Casimir force is vanishing in axion electrodynamics. We consider a concrete setup involving Weyl semimetals, which hosts an axion-like effect on the electromagnetism, towards the measurement of the axionic effect on the Casimir force. Our setup realizes zero Casimir force between metals and may be useful for the search for new force mediated by light particles at the micrometer scale.Comment: 28 pages, 9 figure
    • …
    corecore