104 research outputs found

    Presence of innate lymphoid cells in allogeneic hematopoietic grafts correlates with reduced graft-versus-host disease.

    Get PDF
    BACKGROUND Allogeneic hematopoietic cell transplantation (HCT) can be devastating when graft-versus-host disease (GvHD) develops. GvHD is characterized by mucosal inflammation due to breaching of epithelial barriers. Innate lymphoid cells (ILCs) are immune modulatory cells that are important in the maintenance of epithelial barriers, via their production of interleukin (IL)-22 and their T cell suppressive properties. After chemo- and radiotherapy, ILCs are depleted, and recovery after remission-induction therapy and after allogeneic HCT is slow and incomplete in a significant number of patients, which is associated with an increased risk to develop acute GvHD. OBJECTIVE To investigate whether the presence of mature ILCs within G-CSF-mobilized HCT grafts is correlated with the development of acute GvHD after allogeneic HCT. STUDY DESIGN We analyzed ILCs in a cohort of 36 patients who received allogeneic HCT for a hematologic malignancy, by flow-cytometric immune-phenotyping of prospectively collected, cryopreserved peripheral blood mononuclear cells (PBMCs) and donor-derived HCT grafts collected for the same patients. Biased analysis, with ILCs defined as CD3-lineage-CD45+CD127+CD161+ lymphocytes, was performed using FlowJo version 10 software. Unbiased analysis was done using FlowSOM, which uses a self-organizing map (SOM) with a minimal spanning tree (MST) to define and visualize different clusters present in the samples. RESULTS Remission-induction therapy significantly depleted ILCs from the blood, and patients who had a relatively low percentage of ILCs before allogeneic HCT were significantly more prone to develop acute GvHD, confirming previous findings in a separate cohort. Allogeneic HCT grafts, which were all obtained from the blood of G-CSF-mobilized healthy donors, contained ILCs at a frequency very similar to the peripheral blood of healthy individuals. The ILC subset composition was also comparable to that of the blood of healthy individuals, with the exception of NKp44+ ILC3s, which were significantly more abundant in HCT grafts. The relative ILC content of the graft tended to correlate with ILC reconstitution after allogeneic HCT, suggesting that peripheral expansion of transplanted mature ILCs may contribute to early ILC reconstitution after allogeneic HCT. Patients who received a relatively ILC-poor HCT graft had a significantly increased risk to develop acute GvHD, compared with patients who received relatively ILC-rich allogeneic HCT grafts. Unbiased phenotypic analysis with the FlowSOM algorithm confirmed that allogeneic HCT grafts of patients who developed acute GvHD contained a lower frequency of ILCs that clustered in NKp44+ ILC3 signature groups. CONCLUSION The presence of ILCs in allogeneic HCT grafts is associated with a reduced risk to develop acute GvHD. These data suggest that enhancement of ILC reconstitution of ILC3s in particular, for example via adoptive transfer of ILCs, may prevent acute GvHD and has the potential to improve outcome of allogeneic HCT recipients

    Posttransplant cyclophosphamide for prevention of graft-versus-host disease:results of the prospective randomized HOVON-96 trial

    Get PDF
    Graft-versus-host disease (GVHD) is the most important complication of allogeneic hematopoietic stem cell transplantation (alloHSCT). We performed a prospective randomized, multicenter, phase 3 trial to study whether posttransplant cyclophosphamide (PT-Cy) combined with a short course of cyclosporine A (CsA) would result in a reduction of severe GVHD and improvement of GVHD-free, relapse-free survival (GRFS) as compared with the combination of CsA and mycophenolic acid (MPA) after nonmyeloablative (NMA) matched related and unrelated peripheral blood alloHSCT. Between October 2013 and June 2018, 160 patients diagnosed with a high-risk hematological malignancy and having a matched related or at least 8 out of 8 HLA-matched unrelated donor were randomized and allocated in a 1:2 ratio to CsA/MPA or PT-Cy/CsA; a total of 151 patients were transplanted (52 vs 99 patients, respectively). The cumulative incidence of grade 2 to 4 acute GVHD at 6 months was 48% in recipients of CsA/MPA vs 30% following PT-Cy/CsA (hazard ratio [HR], 0.48; 95% confidence interval [CI], 0.29-0.82; P = .007). The 2-year cumulative incidence of extensive chronic GVHD was 48% vs 16% (HR, 0.36; 95% CI, 0.21-0.64; P < .001). The 1-year estimate of GRFS was 21% (11% to 32%) vs 45% (35% to 55%), P < .001. With a median follow-up of 56.4 months, relapse incidence, progression-free survival, and overall survival were not significantly different between the 2 treatment arms. PT-Cy combined with a short course of CsA after NMA matched alloHSCT significantly improves GRFS due to a significant reduction in severe acute and chronic GVHD

    Interleukin-12 and -23 Control Plasticity of CD127+ Group 1 and Group 3 Innate Lymphoid Cells in the Intestinal Lamina Propria

    Get PDF
    SummaryHuman group 1 ILCs consist of at least three phenotypically distinct subsets, including NK cells, CD127+ ILC1, and intraepithelial CD103+ ILC1. In inflamed intestinal tissues from Crohn’s disease patients, numbers of CD127+ ILC1 increased at the cost of ILC3. Here we found that differentiation of ILC3 to CD127+ ILC1 is reversible in vitro and in vivo. CD127+ ILC1 differentiated to ILC3 in the presence of interleukin-2 (IL-2), IL-23, and IL-1β dependent on the transcription factor RORγt, and this process was enhanced in the presence of retinoic acid. Furthermore, we observed in resection specimen from Crohn’s disease patients a higher proportion of CD14+ dendritic cells (DC), which in vitro promoted polarization from ILC3 to CD127+ ILC1. In contrast, CD14− DCs promoted differentiation from CD127+ ILC1 toward ILC3. These observations suggest that environmental cues determine the composition, function, and phenotype of CD127+ ILC1 and ILC3 in the gut

    Increased cell division but not thymic dysfunction rapidly affects the T-cell receptor excision circle content of the naive T cell population in HIV-1 infection

    Get PDF
    Recent thymic emigrants can be identified by T cell receptor excision circles (TRECs) formed during T-cell receptor rearrangement. Decreasing numbers of TRECs have been observed with aging and in human immunodeficiency virus (HIV)-1 infected individuals, suggesting for thymic impairment. Here, we show that in healthy individuals, declining thymic output will affect the TREC content only when accompanied by naive T-cell division. The rapid decline in TRECs observed during HIV-1 infection and the increase following HAART are better explained not by thymic impairment, but by changes in peripheral T-cell division rates. Our data indicate that TREC content in healthy individuals is only indirectly related to thymic output, and in HIV-1 infection is mainly affected by immune activation

    Human innate lymphoid cells

    No full text
    Innate lymphoid cells (ILCs) are lymphoid cells that do not express rearranged receptors and have important effector and regulatory functions in innate immunity and tissue remodeling. ILCs are categorized into 3 groups based on their distinct patterns of cytokine production and the requirement of particular transcription factors for their development and function. Group 1 ILCs (ILC1s) produce interferon gamma and depend on Tbet, group 2 ILCs (ILC2s) produce type 2 cytokines like interleukin-5 (IL-5) and IL-13 and require GATA3, and group 3 ILCs (ILC3s) include lymphoid tissue inducer cells, produce IL-17 and/or IL-22, and are dependent on ROR gamma t. Whereas ILCs play essential roles in the innate immune system, uncontrolled activation and proliferation of ILCs can contribute to inflammatory autoimmune diseases. In this review, we provide an overview of the characteristics of ILCs in the context of health and disease. We will focus on human ILCs but refer to mouse studies if needed to clarify aspects of ILC biolog

    Cellular therapies for graft-versus-host disease: a tale of tissue repair and tolerance

    No full text
    The success of allogeneic hematopoietic cell transplantation depends heavily on the delicate balance between the activity of the donor immune system against malignant and nonmalignant cells of the recipient. Abrogation of alloreactivity will lead to disease relapse, whereas untamed allo-immune responses will lead to lethal graft-versus-host disease (GVHD). A number of cell types have been identified that can be used to suppress alloreactive immune cells and prevent lethal GVHD in mice. Of those, mesenchymal stromal cells and, to a lesser extent, regulatory T cells have demonstrated efficacy in humans. Ideally, cellular therapy for GVHD will not affect alloreactive immune responses against tumor cells. The importance of tissue damage in the pathophysiology of GVHD rationalizes the development of cells that support tissue homeostasis and repair, such as innate lymphoid cells. We discuss recent developments in the field of cellular therapy to prevent and treat acute and chronic GVHD, in the context of GVHD pathophysiology

    Gut microbiome in allogeneic HCT survivors: The insults are gone but the damage lingers

    No full text
    The gut microbiome is an important regulator of health and disease. The report by Hino et al. suggests that damage to the microbiome, inflicted before and soon after allogeneic haematopoietic progenitor cell transplantation, does not heal by itself, most likely with consequences for late transplantation outcomes. Commentary on: Hino et al. Prolonged gut microbial alterations in post-transplant survivors of allogeneic haematopoietic stem cell transplantation. Br J Haematol 2022 (Online ahead of print). doi: 10.1111/bjh.18574

    ILCs in hematologic malignancies: Tumor cell killers and tissue healers

    No full text
    Innate lymphoid cells (ILCs) have attracted considerable attention in the past years. As modulators of epithelial barrier immunology and homeostasis they play important roles in (auto)immunity and inflammation. Here we review the role of ILCs in hematologic malignancies, where ILCs act as efficient killer cells and as tissue healers, in the context of chemotherapy, radiotherapy and after allogeneic hematopoietic stem cell transplantation (HSCT)
    corecore