8 research outputs found

    Spatio-Temporal Gap Analysis of OBIS-SEAMAP Project Data: Assessment and Way Forward

    Get PDF
    The OBIS-SEAMAP project has acquired and served high-quality marine mammal, seabird, and sea turtle data to the public since its inception in 2002. As data accumulated, spatial and temporal biases resulted and a comprehensive gap analysis was needed in order to assess coverage to direct data acquisition for the OBIS-SEAMAP project and for taxa researchers should true gaps in knowledge exist. All datasets published on OBIS-SEAMAP up to February 2009 were summarized spatially and temporally. Seabirds comprised the greatest number of records, compared to the other two taxa, and most records were from shipboard surveys, compared to the other three platforms. Many of the point observations and polyline tracklines were located in northern and central Atlantic and the northeastern and central-eastern Pacific. The Southern Hemisphere generally had the lowest representation of data, with the least number of records in the southern Atlantic and western Pacific regions. Temporally, records of observations for all taxa were the lowest in fall although the number of animals sighted was lowest in the winter. Oceanographic coverage of observations varied by platform for each taxa, which showed that using two or more platforms represented habitat ranges better than using only one alone. Accessible and published datasets not already incorporated do exist within spatial and temporal gaps identified. Other related open-source data portals also contain data that fill gaps, emphasizing the importance of dedicated data exchange. Temporal and spatial gaps were mostly a result of data acquisition effort, development of regional partnerships and collaborations, and ease of field data collection. Future directions should include fostering partnerships with researchers in the Southern Hemisphere while targeting datasets containing species with limited representation. These results can facilitate prioritizing datasets needed to be represented and for planning research for true gaps in space and time

    Geospatial web services within a scientific workflow: Predicting marine mammal habitats in a dynamic environment

    No full text
    Our ability to inform conservation and management of species is fundamentally limited by the availability of relevant biogeographic data, use of statistically robust predictive models, and presentation of results to decision makers. Despite the ubiquity of presence-only models, where available, survey effort should be included in the modeling process to limit spatial bias. The biogeographic archive therefore should be able to store and serve related spatial information such as lines of survey effort or polygons of the study area, best accomplished through geospatial web services such as the Open Geospatial Consortium (OGC) Web Feature Service (WFS). ideally data could then be easily fetched by modelers into a scientific workflow, providing a visually intuitive, modular, reusable canvas for linking analytical processes without the need to code. Species distribution model results should be easily accessible to decision makers, such as through a web-based spatial decision support system (SDSS).With these principles in mind, we describe our progress to date serving marine animal biogeographic data from OBIS-SEAMAP (http://seamap.env.duke.edu), and consuming the data for predictive environmental modeling of cetaceans. Using geospatial web services to automate the scientific workflow process, marine mammal observations from OBIS-SEAMAP are used to sample through date-synchronous remotely sensed satellite data for building multivariate habitat models using a variety of statistical techniques (GLM, GAM, and CART). We developed custom scientific workflows using ESRI Model Builder, ArcGIS geoprocessor, R statistical package, Python scripting language, PostGIS geodatabase, and UMN MapServer. These model outputs are then passed to an SDSS with spatial summary capability.Custom products will be open-source and freely available. In the future, we hope to integrate technologies such as OGC WCS, OPeNDAP, and Kepler. The principles and lessons described here can be broadly applied to serving biogeographic data, species distribution modeling, and decision support within the ecological informatics community. (c) 2007 Published by Elsevier B.V.</p

    Dynamic ocean management: Identifying the critical ingredients of dynamic approaches to ocean resource management

    No full text
    Dynamic ocean management, or management that uses near real-time data to guide the spatial distribution of commercial activities, is an emerging approach to balance ocean resource use and conservation. Employing a wide range of data types, dynamic ocean management can be used to meet multiple objectives—for example, managing target quota, bycatch reduction, and reducing interactions with species of conservation concern. Here, we present several prominent examples of dynamic ocean management that highlight the utility, achievements, challenges, and potential of this approach. Regulatory frameworks and incentive structures, stakeholder participation, and technological applications that align with user capabilities are identified as key ingredients to support successful implementation. By addressing the variability inherent in ocean systems, dynamic ocean management represents a new approach to tackle the pressing challenges of managing a fluid and complex environment

    Dynamic ocean management: Defining and conceptualizing real-time management of the ocean

    No full text
    Most spatial marine management techniques (e.g., marine protected areas) draw stationary boundaries around often mobile marine features, animals, or resource users. While these approaches can work for relatively stationary marine resources, to be most effective marine management must be as fluid in space and time as the resources and users we aim to manage. Instead, a shift towards dynamic ocean management is suggested, defined as management that rapidly changes in space and time in response to changes in the ocean and its users through the integration of near real-time biological, oceanographic, social and/or economic data. Dynamic management can refine the temporal and spatial scale of managed areas, thereby better balancing ecological and economic objectives. Temperature dependent habitat of a hypothetical mobile marine species was simulated to show the efficiency of dynamic management, finding that 82.0 to 34.2 percent less area needed to be managed using a dynamic approach. Dynamic management further complements existing management by increasing the speed at which decisions are implemented using predefined protocols. With advances in data collection and sharing, particularly in remote sensing, animal tracking, and mobile technology, managers are poised to apply dynamic management across numerous marine sectors. Existing examples demonstrate that dynamic management can successfully allow managers to respond rapidly to changes on-the-water, however to implement dynamic ocean management widely, several gaps must be filled. These include enhancing legal instruments, incorporating ecological and socioeconomic considerations simultaneously, developing ‘out-of-the-box’ platforms to serve dynamic management data to users, and developing applications broadly across additional marine resource sectors

    OBIS-SEAMAP The World Data Center for Marine Mammal, Sea Bird, and Sea Turtle Distributions

    Get PDF
    The science needed to understand highly migratory marine mammal, sea bird, and sea turtle species is not adequately addressed by individual data collections developed for a single region or single time period. These data must be brought together into a common, global map based on a coherent, interoperable, and openly accessible information system. This need was clearly articulated by the National Oceanographic Partnership Program (NOPP) and the Alfred P. Sloan Foundation when they co-sponsored a new effort to directly address this issue in 2002. The result is OBIS-SEAMAP: the world data-center for marine mammal, sea bird, and sea turtle information. OBIS-SEAMAP brings together georeferenced distribution, abundance, and telemetry data with tools to query and assess these species in a dynamic and searchable environment. In a second round of NOPP support that began in 2007, the National Science Foundation is helping expand this effort into new technologies and data types. To date, the OBIS-SEAMAP information system includes more than 2.2 million observation records from over 230 data sets spanning 73 years (1935-2008), and growth of this data archive is accelerating. All of these data are provided by a growing international network of individual and institutional data providers
    corecore